
Few updates on

Power Measurement

Dr. Emanuele Simili HEPiX Benchmarking Working Group 7 Marh 2023

❖ Completed the thread-scan study on the x86 (w/out HT) & arm using 8 workloads

❖ Tried a full unofficial run of the HEP Benchmark Suite (same 8 workloads)

❖ Re-done the IPMI validation measurement (IPMItool vs. metered plug)

❖ Status of the Energy Plug-in for the HEP-Score suite & open issues

❖ (no) Preparing paper for the ACAT 2022 conference (using old data)

❖ (no) Tested the latest HEP-Score with Gonzalo’s script (run_HEPscore.sh)

Recent Updates

ScotGrid @ Glasgow: Emanuele Simili, Gordon Stewart, Samuel Skipsey, Dwayne Spiteri, David Britton

HEPiX @ CERN: Domenico Giordano, Gonzalo Menendez Borge, Johannes Elmsheuser, etc.

Job Profiles (LHCb)

arm

Here an example of runtime profiles for the LHCb workload (one of the 8 containers). The workload was
executed ~ 10 times, increasing the number of copies at each run to progressively fill the CPU …

x86 HT

Thread Scan (8x)
ATLAS CMS Belle2

On ARM, the Energy (Power)

increase linearly with the n.

of threads, on x86 saturates

once hyper-threading starts.

W.r.t. the n. of threads, the

execution time is constant on

ARM, while it increases on
x86 once hyper-threaded.

ALICE

ATLAS reco Sherpa CMS reco LHCb
List of containers:
atlas-sim_mt-ma-bmk
cms-gen-sim-run3-ma-bmk
belle2-gen-sim-reco-ma-bmk
alice-digi-reco-core-run3-ma-bmk
atlas-gen_sherpa-ma-bmk
atlas-reco_mt-ma-bmk
cms-reco-run3-ma-bmk
lhcb-sim-run3-ma-bmk

Thread Scan (averages)

sum

sum

average

geomean

Thread Scan (scores)

A physical x86 cores is faster than an ARM core, but rapidly lose the advantage once hyper-threading starts.

ARM is always more energy efficient than x86 !

Combining the data is not easy …and it is not clear to me what quantity will be more interesting:

I tend to be more in favor of:

WL-Score (*normalized) / Total Energy

Because Tot. Energy takes into account the job
duration as well, while <Power> does not

This is also more fair to the x86, which may use
more energy but in some case completes the job
quicker!

It is trivial that the <Power> of arm is lower, due to
the lower TDP ...

geomean/sum

geomean/average

armx86 HT x86 noHT

HEP-Score 2023
Here is a full run of the most recent HEP-Score containers available for arm & x86 (8 in total):

Power Profiles (runtime)

WorkLoad Container cp thr/cp evt/thr tot evts

ATLAS Sim atlas-sim_mt-ma-bmk 24 4 20 1920

CMS Gen-Sim cms-gen-sim-run3-ma-bmk 24 4 100 9600

Belle2 Gen-Sim-Reco belle2-gen-sim-reco-ma-bmk 96 1 50 4800

ALICE Deigi-Reco alice-digi-reco-core-run3-ma-bmk 24 4 3 288

ATLAS Gen Sherpa atlas-gen_sherpa-ma-bmk 96 1 500 48000

ATLAS Reco atlas-reco_mt-ma-bmk 24 4 100 9600

CMS Reco cms-reco-run3-ma-bmk 24 4 100 9600

LHCb Sim lhcb-sim-run3-ma-bmk 96 1 5 480

Runtime power profile extracted from the arm and the x86 (with and without Hyper-Threading):

Full list of workloads:
(in order of execution)

are these reasonable
numbers?

arm

x86 HT

x86 noHT

HEP-Score 2023 (8x)

Arch Max Threads WorkLoad cp thr/cp evt/thr tot evts Time (H:m:s) Time (s) Energy(kW*h) Pow avg (W) WL score evt/sec E/evt (Wh) Time/cp Energy/cp score/x86_ht (score/x86)/watt (score/x86)/kWh

x86_HT 96 ATLAS Sim 24 4 20 1920 01:22:16 4936 0.5134 374 0.4081 0.3890 0.2674 205.7 0.0214 1.00 0.003 1.948

x86_HT 96 CMS Gen-Sim 24 4 100 9600 00:43:16 2596 0.2730 379 3.7328 3.6980 0.0284 108.2 0.0114 1.00 0.003 3.663

x86_HT 96 Belle2 Gen-Sim-Reco 96 1 50 4800 00:05:48 348 0.0350 362 20.2441 13.7931 0.0073 3.6 0.0004 1.00 0.003 28.571

x86_HT 96 ALICE Deigi-Reco 24 4 3 288 00:07:02 422 0.0407 348 0.7652 0.6825 0.1415 17.6 0.0017 1.00 0.003 24.546

x86_HT 96 ATLAS Gen Sherpa 96 1 500 48000 00:07:33 453 0.0448 356 113.3022 105.9603 0.0009 4.7 0.0005 1.00 0.003 22.302

x86_HT 96 ATLAS Reco 24 4 100 9600 00:16:34 994 0.0985 357 12.0765 9.6579 0.0103 41.4 0.0041 1.00 0.003 10.156

x86_HT 96 CMS Reco 24 4 100 9600 00:26:04 1564 0.1638 377 6.4225 6.1381 0.0171 65.2 0.0068 1.00 0.003 6.105

x86_HT 96 LHCb Sim 96 1 5 480 00:08:15 495 0.0469 341 2'801.8219 0.9697 0.0978 5.2 0.0005 1.00 0.003 21.304

x86_HT 96 0

x86_noHT 48 ATLAS Sim 12 4 20 960 00:47:12 2832 0.2755 350 0.3696 0.3390 0.2869 236.0 0.0230 0.91 0.003 3.288

x86_noHT 48 CMS Gen-Sim 12 4 100 4800 00:23:35 1415 0.1400 356 3.4493 3.3922 0.0292 117.9 0.0117 0.92 0.003 6.601

x86_noHT 48 Belle2 Gen-Sim-Reco 48 1 50 2400 00:03:10 190 0.0179 338 19.1577 12.6316 0.0074 4.0 0.0004 0.95 0.003 53.016

x86_noHT 48 ALICE Deigi-Reco 12 4 3 144 00:04:34 274 0.0245 322 0.6100 0.5255 0.1702 22.8 0.0020 0.80 0.002 32.525

x86_noHT 48 ATLAS Gen Sherpa 48 1 500 24000 00:04:11 251 0.0238 342 99.5964 95.6175 0.0010 5.2 0.0005 0.88 0.003 36.872

x86_noHT 48 ATLAS Reco 12 4 100 4800 00:10:57 657 0.0588 322 10.1294 7.3059 0.0123 54.8 0.0049 0.84 0.003 14.255

x86_noHT 48 CMS Reco 12 4 100 4800 00:15:04 904 0.0880 350 5.7184 5.3097 0.0183 75.3 0.0073 0.89 0.003 10.121

x86_noHT 48 LHCb Sim 48 1 5 240 00:05:03 303 0.0264 314 2'339.6395 0.7921 0.1100 6.3 0.0006 0.84 0.003 31.630

x86_noHT 48

arm 80 ATLAS Sim 20 4 20 1600 00:55:06 3306 0.2581 281 0.5526 0.4840 0.1613 165.3 0.0129 1.35 0.005 5.246

arm 80 CMS Gen-Sim 20 4 100 8000 00:25:54 1554 0.1256 291 5.3221 5.1480 0.0157 77.7 0.0063 1.43 0.005 11.352

arm 80 Belle2 Gen-Sim-Reco 80 1 50 4000 00:04:42 282 0.0222 283 21.2810 14.1844 0.0055 3.5 0.0003 1.05 0.004 47.395

arm 80 ALICE Deigi-Reco 20 4 3 240 00:05:33 333 0.0233 251 0.8353 0.7207 0.0969 16.7 0.0012 1.09 0.004 46.931

arm 80 ATLAS Gen Sherpa 80 1 500 40000 00:05:42 342 0.0274 289 127.4113 116.9591 0.0007 4.3 0.0003 1.12 0.004 40.996

arm 80 ATLAS Reco 20 4 100 8000 00:15:50 950 0.0690 262 11.7988 8.4211 0.0086 47.5 0.0035 0.98 0.004 14.155

arm 80 CMS Reco 20 4 100 8000 00:19:53 1193 0.0951 287 7.4371 6.7058 0.0119 59.7 0.0048 1.16 0.004 12.183

arm 80 LHCb Sim 80 1 5 400 00:07:12 432 0.0326 271 3'242.8401 0.9259 0.0814 5.4 0.0004 1.16 0.004 35.547

arm 80

Beside having too many numbers to deal with, my major issue is with the WL-Scores, as they vary over
3-4 orders of magnitudes, making plots impossible without some sort of normalization !

What’s a reasonable normalization? Would it be possible to normalize them within each container?

HEP-Score results
How the data look like for each workload …

WL-Score normalized to the x86 value (=1)

… and derived quantities:

HEP-Score results (2)
Standard plots (such as Events/Second
& Energy/Event) are not very nice to look
at … due to the very different nature of
the workloads and widely different
number of events produced:

Again, it would be nice to have some sort
of normalization, relative to the specific
workload (e.g., event generation
produces 1 event/sec. , full detector
simulation produces 1 event/min. , etc.)

IPMI validation

armx86 HT x86 noHT

I did a few runs to validate IPMI reading on arm & x86, by comparing the output of IPMItools with the
reading from a metered plug connected to the servers (1h duration, sleep & stress):

IPMI exporter Manual read (1h) diff (IPMI - Plug)

job machine HT power(s) meter(s) Time (s) Energy (kWh) Min (W) Max (W) Avg (W) Energy (kWh) Min (W) Max (W) Energy % diff/IPMI

sleep amd HT 1 1 3601 0.086 60 148 86 0.088 82 135 -0.002 -1.9%

sleep amd HT 2 1 3601 0.093 72 150 93 0.097 87 156 -0.004 -4.1%

sleep amd HT 2 2 3600 0.092 72 163 92 0.096 89 154 -0.004 -4.1%

stress amd HT 1 1 3600 0.291 68 296 291 0.295 267 300 -0.004 -1.5%

stress amd HT 2 1 3630 0.379 76 446 376 0.387 334 396 -0.008 -2.0%

stress amd HT 2 2 3600 0.372 77 377 372 0.380 334 388 -0.008 -2.2%

sleep amd noHT 1 1 3601 0.134 116 151 134 0.135 133 143 -0.001 -0.7%

stress amd noHT 1 1 3600 0.259 131 269 259 0.263 241 272 -0.004 -1.4%

sleep arm // 1 1 3600 0.095 93 114 95 0.094 94 109 0.001 1.6%

sleep arm // 2 1 3599 0.104 87 131 104 0.103 102 116 0.001 1.0%

sleep arm // 2 2 3599 0.104 52 123 104 0.102 102 118 0.002 1.9%

stress arm // 1 1 3599 0.236 94 244 236 0.233 197 240 0.003 1.4%

stress arm // 2 1 3600 0.241 92 248 241 0.240 105 246 0.001 0.6%

stress arm // 2 2 3600 0.239 93 247 239 0.236 207 246 0.003 1.1%

Validation Results
Results are a bit confusing, with the discrepancy changing sign between arm & x86 …
However, the error is small enough, with the highest discrepancy being about 4%.

There is already some idea about fitting these data separately for the 2 servers, involving a slope
(efficiency of the supplier) and an intercept (power lost) …

… but I need to collect more data, as an interpolation over 2 points is not ideal !

The energy_plugin class implements an internal timer, which is used to regularly grab runtime metrics
during execution, and an analyser which calculates execution stats from runtime metrics.

Python code uploaded on Git:
(but Jira issue not closed yet …)

Energy Plug-In

Called at regular intervals to

grab metrics, such as time-

stamp, IPMI power reading,

CPU usage, etc.

Calculates statistics using

the ‘trapezoidal sum’,

which takes care of

possibly changing intervals

or missing time-stamps.

HEP dependencies:

• StatefulPlugin ok

• Extractor no

Skeleton class by Gonzalo, content by Emanuele (v0.4c)

import json
...
from hepbenchmarksuite.plugins.stateful_plugin import StatefulPlugin
#from hepbenchmarksuite.plugins.extractor import Extractor

class EnergyPlugin(StatefulPlugin):
...

IPMI loop function (runtime): dumps system metrics to a dictionary
def grab_metrics(self,start_time):

time_stamp = dt.datetime.utcnow()
time_key = str(time_stamp.isoformat(timespec='milliseconds')) + "Z"
...
cmd_ipmi = r""" ipmitool dcmi power reading | grep "Instantaneous power reading:" """
powa = self.get_numbers(self.run_command(cmd_ipmi),0)
...

IPMI analiser functions (postrun): calculates statistics and averages
def calculate_statistics(self, measurements: dict) -> Dict[str, float]:

...
for k in sorted(measurements.keys()):

...
deltaSec = (time_stamp - time_prev).total_seconds()
powAve = (powa + powa0) / 2
...

return self.summary_dict

https://gitlab.cern.ch/hep-benchmarks/hep-benchmark-suite/-/blob/fc84702f7e90a1ce850abdd461fe6aaf9e374a1c/hepbenchmarksuite/plugins/energy_plugin.py

The energy plug-in is a Python module that runs alongside with the workloads, while extracting CPU and
RAM usage, core Frequency, and IPMI (and GPU) power.
When the workload is finished, the plug-in calculates a number of execution statistics and save these,
together with the time-stamped runtime data, as a dictionary in a json file.

There are a number of issues that became apparent during the first round of implementation and testing,
some of these are solved (or so I think), others are still in the air:

❖ Sampling frequency: it does not matter any more!
Using the trapezoidal sum, I see that results with 1 , 5 and 10 sec. sampling frequency are equivalent
(< 1%). Finally, I am opting for 5 sec. sampling interval (as 1 sec. is too often and clogs the collector).

❖ No idle collection: still unclear how we will achieve this during the actual run. (#)

❖ I don’t want to run the HEP-Score as root !
Therefore I will implement the option of grabbing IPMI values (only) from dump file. This means that
the machine will execute a script at boot, and never think about it again!

❖ Energy normalization issue: if the energy is measured alongside the workload, how do we scale it?
The machine with more threads does more work, therefore the total Energy will be more!

❖ Score normalization issue: the score produced by each workload varies over 3-4 orders of magnitude!
Without a proper normalization, it is impossible to plot anything…

Open Issues

End

x86_64: Single AMD EPYC 7003 series (SuperMicro)
CPU: AMD EPYC 7643 48C/96T @ 2.3GHz (TDP 300W)
RAM: 256GB (16 x 16GB) DDR4 3200MHz
HDD: 3.84TB Samsung PM9A3 M.2 (2280)

arm64: Single socket Ampere Altra Processor (SuperMicro)
CPU: ARM Q80-30 80C @ 3GHz (TDP 210W)
RAM: 256GB (16 x 16GB) DDR4 3200MHz
HDD: 3.84TB Samsung PM9A3 M.2 (2280)

Available Hardware
We have two almost identical machines of comparable price, one with an AMD x86_64 CPU (48c/96t),

the other with an Ampere arm64 CPU (80c):

The x86_64 CPU can run in Hyper-Threading regime (with 96 hyperthreaded cores),

or without (with 48 physical cores). Hyper-threading does not double performances, but adds 10-20%.

Roughly: 1 hyperthreaded core ~ 55-60% of 1 physical core.

The arm64 CPU has no such feature, therefore it can only run with its 80 physical cores.

