WCTE Analysis Overview

WCTE Collaboration Meeting 22/07/22

Lauren Anthony

l.anthony@imperial.ac.uk

Contents

- Simulation overview
 - Updates to WCSim
 - Upcoming WCSim tasks
- FiTQun reconstruction
 - Reminder of status from last meeting
- WCTE analysis framework
 - Alternative PID with machine learning
 - WCTE event selection
 - Studies required based on July beam test
- Beam window studies
- PMT timing and water attenuation length analysis

This Session

- 1. PMT timing and water attenuation length analysis Alie Craplet
- 2. Beam window studies Yassine Alj Hakim
- 3. Alternative PID with machine learning Tanima Mondal, Sunanda, Arnab Saker

WCTE Geometry Options

- Original: 18 column 5 row (~130mPMT)
- Reduced diameter #1: 18 column 5 row
- Reduced diameter #2: 16 column 5 row
- Reduced height and diameter: 16 column 4 row (~104 mPMT)

Height for WCSim

Config	Columns	Rows	Height (mm)	Diameter (mm)	ID height (mm)	ID diameter (mm)	Photocoverage
Original	18	5	4320	4022	3539	3621	19%
Reduced diam 1	18	5	4200	3800	3539	3439	20%
Reduced diam 2 (16c- 5r)	16	5	4200	3800	3539	3427	17%
Reduced height and diam (16c-4r)	16	4	3400	3800	2739	3427	19%

WCTE Geometry Options

Original 18 column, 5 row	16 column, 5 row	16 column, 4 row	

Simulation and Reconstruction Overview

- 1. Simulations done using WCSim
 - <u>https://github.com/WCSim/WCSim</u> (official)
 - <u>https://github.com/laurenanthony2/WCSim</u> (options to change WCTE geometry)
- 2. Apply the fiTQun reconstruction algorithm
 - <u>https://iopscience.iop.org/article/10.1088/1742-6596/888/1/012066</u>
 - For geometries with significant changes I.e. different number of mPMTs this must be retuned
 - To use fiTQun you must be added to the github repo
- 3. Retune fiTQun with new dimensions and produce MC using WCSim
 - Done using the fiTQun Utilities package
- 4. Apply new version of fiTQun

CAD Model Integration with WCSim

- CAD models have been successfully imported into WCSim (not implemented yet in official repo)
- Method uses "CADMesh" software (open source)
 - <u>https://github.com/christopherpoole/CADMesh</u>
- Working in PR for this function and for geometry options
- Pablo is working on importing CAD models of mounted cameras

WCSim Tasks

We will need some validation at various stages -> requires some more analyzers •

- Potentially "The Great Merge" is approaching...
 - Merge HK and nuPRISM branches of WCSim
- Currently working on PR for all recent change from laurenanthony2/WCSim -> WCTE/WCSim:
 - Geometry updates
 - CAD interface •

Imperial College

London

- mPMT removal on top cap
- **Process:**
 - Line up WCTE/WCSim, nuPRISM/WCSim, WCSim/WCSim and keep them synced
 - Tom Dealtry merges the great merge into WCSim/WCSim ٠
 - We merge WCTE PR into WCTE/WCSim ٠
 - We PR from WCTE/WCSim into WCSim/WCSim ٠

8

FiTQun Tuning Program: Current status (same as last meeting)

- Tuning for 18c5r was completed by Shinoki-san some time ago
 - These tuning files are available to download through fiTQun scripts
- Tuning for 16c5r is complete
 - Some bugs to iron out (see following slides)
- Tuning for 16c4r is ongoing
 - Found some bugs in the scattering table and PMT timing response and only reran for 16c5r
 - Angular response is complete
- Bugs mainly include a momentum bias (still investigating but is ok for some studies to look at relative differences in reconstruction)

FiTQun reconstruction comparison: 500MeV e-

- 500MeV e- from centre of detector
- Reconstruction seems worse after tuning
- RMS of momentum resolution reduced after tuning however there is a clear momentum bias
 - Requires some tuning of QE parameters in fiTQun override file

Imperial College

11

WCTE Analysis: Defining Analysis Cuts

- Seen from the reconstructed momentum plots that there are momentum regions where we do not reconstruct so well
 - Many particles pass through the detector
 - Some below Cherenkov threshold
 - Low visible energy events
- Need to calculate:
 - "towall" and "dwall" distances of vertex to detector wall
 - Based on calculations used for SK and IWCD
 - Visible energy cut
 - PID cuts based on likelihood

Study of Beam/statistics requirements

- Need to study the requirements necessary for the beam
- Important to study electron contamination in muon sample
 - Ideally want 99% purity in muon sample
 - Need to study mis-PID
- Pion studies
 - Pions mostly use to study scattering
 - Expect ~ 1k pion events/day WCTE
 - 200 MeV pions are below Cherenkov threshold when entering the detector (with nominal beam window design)
 - Impacts beam window design
 - WCSim is difficult to remove individual mPMTs in the current configuration

Machine Learning Application (Alternative PID method)

- Motivation from Results obtained for Machine Learning applications in IWCD.
- Idea is to apply Machine Learning Techniques for PID & Event Reconstruction.
- WCSim Simulation of 1 million e- and μ events using (4R,16C) geometry class.
- Current Work:

Development of ML Data Pipeline (Faster implementation of ML model)

- Conversion of .root files -> .h5 file for ML training
- Data Exploration and Preprocessing of the Simulated event data
- 3D mapping of WCTE detector to 2D Image.
- Future Work:
 - Initiate ML training with generated event data.
 - Apply Machine Learning Algorithms
 - For Event Reconstruction.
 - Particle Identification Analysis.

Y. Alj Hakim

Beam Window Studies

- Beam window simulation
 - Using Geant4 v4.10.01.p03
 - Using detector dimensions, material characteristics from WCSim
 - Physics lists:
 - FTFP_BERT, G4EmStandardPhysics, G4OpticalPhysics
 - Compared different beam window configurations
 - •Using 200, 300, 2150 MeV/c electron, muon, pion and proton beam
 - •2500 events simulated

•Looked at beam divergence and beam energy resolution at the black sheet position

A. Craplet PMT timing and water attenuation length analysis

- Study PMT timing how well can we calibrate out differences in PMT response/properties
- Calculation of water attenuation length through developing the HK "hybrid attenuation fitter"

Summary

- Some updates and merges necessary for WCSim to move on
 - Require some person power for validations of merged versions of WCSim
- Retuning of the reconstruction algorithm is ongoing
 - Shown some degradation in momentum, direction and vertex resolution compared to larger detector
 - Need to study direct and indirect light MC in more detail
- Working on more comprehensive analysis and selection cuts for WCTE
 - Necessary for studying WCTE beam requirements
 - Studies of muon sample purity
 - Low momentum pion reconstruction
- Beam window studies suggest a beam window entering the detector within the support structure is favourable
- Ongoing studies in
 - PID with machine learning
 - Calibration analyses for PMT timing and water attenuation length

WCTE in T9

WCTE in T9: Diameter Restriction

- Original 18 mPMT column, 5 mPMT row detector was a tight fit into T9
 - Space for movement system
 - Little space to walk around
 - Little space for crank
- Tank diameter was also larger than could easily be transported
 - > 4m diameter required road closure
- Smaller diameter also reduces price
- Studied a reduction in diameter by
 - Keeping same number of mPMTs
 - Removing 2 columns

WCTE in T9: Height Restrictions

Reminder: Height Restrictions

- With original design, it was not possible to lift WCTE into T9 with either crane
- Investigated:
 - Removing some space between support structure and lid
 - Remove one row of mPMTs

FiTQun Tuning Program

- 1. Create indirect light tables (scattered and reflected light)
 - Simulate "electron bomb" ~1bn events (MC used for this step and angular response)
- 2. PMT tunings
 - PMT charge response (doesn't need to be changed if using same PMTs)
 - PMT angular response (detector dependent)
 - PMT timing response (detector dependent)
- 3. Scalar parameters
 - Don't know so much about
- 4. Cherenkov profiles (independent of detector, but varies with simulation package)
 - Shouldn't need to be redone for new geometries

FiTQun reconstruction comparison: 1000MeV e-

• 0 - 1000MeV e- uniformly distributed

Resolution much worse for after tuning

FiTQun reconstruction comparison: 1000MeV mu-

- 0 1000MeV mu- uniformly distributed
- Smaller difference in mean and RMS values for uniformly distributed muons
- Resolution for muon like events seems better than for electrons after tuning
 - RMS of momentum resolution
 better after tuning

IWCD

- Motivation is to apply Machine Learning Techniques to the IWCD event selection.
- **Rebaseline of IWCD detector,** and **modification of IWCD geometry** to achieve neutrino interaction rates at higher precision.
- The performance of ML ResNet Model is analysed using IWCD short tank geometry data, to compare with fiTQun performance.

Current Work:

- Analysing fiTQun PID performance for IWCD short tank geometry to study ν_e event samples
- $v_{\rm e}$ interactions enriched samples are selected, where CCO $\pi v_{\rm e}$ is signal event, NC π^0 & entering γ are background events.
- Reconstruction algorithm fiTQun is applied with e-mu & π^0 -e cut to separate signal from background.
- IWCD short tank geometry is analysed through generating ROC curves and confusion matrix for PID.
- Future Work:
 - Analyse fiTQun PID over IWCD latest production with higher statistics and retune the cut line.
 - Eventually apply ML PID techniques to select IWCD events.

Figure: Distribution of events in reconstructed electron-muon likelihood ratio vs reconstructed lepton Momentum

