Imperial College

PMT in-situ calibration with the laser diffuser for WCTE

Alie Craplet (alie.craplet17@imperial.ac.uk)

The calibration process

- Laser diffuser and calibration deployment system (CDS) build and tested at Imperial
- Source displaced at key positions within the tank, short light bursts shot.
- Hit times used for timing calibration.
- Number of photo-electron recorded used for PMT angular response calibration and water attenuation length estimation

Simulated datasets

Imperial College

- Datasets simulated with WCSim and the WCTE 16cShort (16c4r) geometry (without CDS arm)
- Source simulated as a/gps/particle opticalphoton at different positions
- $3 k$ events (10k photons per event) simulated.
- Uniform light emission in phi $0-360^{\circ}$ and theta $20-180^{\circ}$.
- Photon energy: $3.505 \mathrm{eV}(353.7 \mathrm{~nm})$ or $3.089 \mathrm{eV}(401.9 \mathrm{~nm})$
- Studies done with either the 4 mPMT masked or not.

Timing calibration

Use the hit times of each PMT to figure out the required timing offset

Timing calibration - method

1. Time of flight correction of the digitised hit times

Time of flight correction

2. Add to TOF-corrected hit time a PMT-dependent smearing drawn from a Gaussian $t_{s} \sim \mathrm{G}\left(\mu_{s}, \sigma_{s}\right)$

$$
\not t_{D}=t_{c}+t_{s}
$$

Smeared and TOF-corrected hit time
3. Gaussian fit to t_{D} giving best fit parameters $t_{D} \sim \mathrm{G}\left(\mu_{D}, \sigma_{D}\right)$ Comparison of μ_{D} to t_{s} to check accuracy of the calibration

Timing calibration - Results for source at centre

Source at $[0,0,0]$

The $t_{s}-\mu_{D}$ distribution is centered at +0.29 ns with a standard deviation of ${ }^{\sim} 0.2 \mathrm{~ns}$.

The accuracy of the calibration doesn't depend on the value of the smearing parameters.

$t_{s}-\mu_{D}$

Angular response and attenuation length

Fit the number of photoelectron to extract $A(\cos (\theta))$ and α

Imperial College

The wcsim_hybrid_attenuation_fit code

Written and adapted to run with WCTE-geometry wcsim-made files by Ka Ming Tsui (Liverpool):
https://github.com/kmtsui/wcsim_hybrid_attenuation_fit/tree/feature_wcte
This method uses a set of multiplicative factors and a Minuit minimisation to fit the number of P.E. in the data using:

Before the fit, the PMTs can either distributed in bins of $\cos (\theta)$ and distance R from the light source (100 bins total) or, if the fit is unbinned, each bin holds the data from one PMT.

The code extracts the attenuation length in the water α and the angular response of the PMTs.

P.E. fit for attenuation length and pmt angular response extraction

PMT id number

The number of photo-electron is in general very accurately fitted by the program with a x^{2} value between 1 and 2 .

The fit quality seems to be uniform across the tank - no significant reflections/shadowing.

Effect of shadowing on fitting quality

Fitting quality depending on the source position's within the tank

Source positions further away from the centre of the detector are worsley fitted, shadowing plays a very important role on the fitting quality.

Angular response

PE_predicted $=\operatorname{Norm} \times \exp \{-\mathrm{R} / \alpha\} \times \omega \times$ Angular Response $(\cos (\theta))$

Consistent angular response across source positions, both the binned and polynomial response agree.

Attenuation length

Fit quality for unbinned fits chi2/number of non-empty bins<4.9

PE_predicted $=\operatorname{Norm} \times \exp \{-\mathrm{R} / \alpha\} \times \omega \times$ Angular Response $(\cos (\theta))$

--	True $\alpha=6677.84 \mathrm{~cm}$
\square	pos 13: $[0,100,0]$
\square	pos 15: $[0,-100,0]$
\square	pos 11: $[75,0,0]$
-	pos 26: $[75,0,75]$
\square	pos 2: $[-75,0,-75]$
\square	pos 5: $[0,0,-75]$
\square	pos 17: $[-75,0,0]$
\bigcirc	pos 20: [-75, 0, 75]
\square	pos 21: $[-75,-100,75]$
\bigcirc	pos 23: $[0,0,75]$

Simulated attenuation length: 66m

The estimate of the attenuation length depends mainly on:

- The source position
- The length of the the TOF-corrected window

Some issues probably remain - we expect a smaller error than what we see.

Attenuation length without shadowing

PE_predicted $=\operatorname{Norm} \times \exp \{-\mathrm{R} / \alpha\} \times \omega \times$ Angular Response $(\cos (\theta))$

Configurations:

30: Unbinned PMT, polynomial A.R timetof < $0.15 \mathrm{~ns}, 0.5<$ costh
32: 30 ($0.6<$ costh <0.8)
34: 30 (timetof < 0.25ns)

40: Unbinned PMT, binned A.R. timetof $<0.15 \mathrm{~ns}$, costh >0.5
41: 40 (only central PMT)
42: 40 (first ring of PMTs)
43: 40 (second ring of PMTs)
44: 40 ($\mathrm{R}>100 \mathrm{~cm}$)
46: 40 (timetof < 0.25ns)
47: 40 (timetof < 0.05ns)

Conclusion

- The possibility of using the laser diffuser and the CDS for in-situ PMT timing and angular response calibration is demonstrated
- Any (simple) time smearing can be calibrated to within about 0.2 ns , well below the PMT transient time spread
- The angular response of the PMT is found to be consistent and can be used as a benchmark for the calibration
- Some work is required to make sure the attenuation length estimate is optimal
- The CAD model of the CDS will next be added to the simulation to verify the impact of shadowing and light reflection

Back-up slides

Timing calibration - Results

Source at [75, 75, -100]

p.e. per PMT

Checks by A. Bercebal-Ruiz

PMT_QTot

Scattering or absorption?

Geometrical checks

Check the distance of closest approach between a given photon trajectory (associated with a hit PMT) and the other PMT as a function of the X^{2} of the hit PMT.

Hope that if there is PMT-induced shadowing we will see that a lot of mPMT and/or PMT will cross the line of sight.

All geometrical checks were made with a cut on the timetof (raw) at 0.25 ns

Geometrical checks

Top: total number of PMTs closer to the line of sight than

$$
\mathrm{h}_{\text {mPMT }}(27.2 \mathrm{~cm})
$$

Middle: total number of PMTs closer to the line of sight than

$$
\mathrm{h}_{\text {PMT }}(13.8 \mathrm{~cm})
$$

Bottom: total number of PMTs closer to the line of sight than $\mathrm{h}_{\mathrm{PMT}} / 2(7.9 \mathrm{~cm})$

X^{2} per PMT as a function of how many PMTs are within a certain range of

χ^{2} per PMT as a function of how many PMTs are within a certain range of

Geometrical checks

Top: total number of PMTs closer to the line of sight than

$$
\mathrm{h}_{\text {mPMT }}(27.2 \mathrm{~cm})
$$

Middle: total number of PMTs closer to the line of sight than

$$
\mathrm{h}_{\mathrm{PMT}}(13.8 \mathrm{~cm})
$$

Bottom: total number of PMTs closer to the line of sight than

$$
\mathrm{h}_{\text {PMT }} / 2(7.9 \mathrm{~cm})
$$

χ^{2} per PMT as a function of how many PMTs are within a certain range of the photon trajectory ($\mathrm{A}=5 \mathrm{~cm}, \mathrm{~B}=2.5 \mathrm{~cm}, \mathrm{C}=1.25 \mathrm{~cm}$) - Source position 5

Possible other fixes: Option 2: mask (m)PMT as required

For each source-PMT trajectory -> check the distance between the trajectory and each PMT -> if dist to any PMT is < thresh: mask

Distance to the photons trajectory to PMT 1962 with $\chi^{2}=771.09$ file: wcsim_3kevents_3eV_16cShort_pos1_v6u

Above: simply removed the two most problematic mPMTs.
Less accurate than simply displacing the source

Attenuation length with shadowing

PE_predicted $=\operatorname{Norm} \times \exp \{-\mathrm{R} / \alpha\} \times \omega \times$ Angular Response $(\cos (\theta))$ 2 mPMT removed

Configurations:
30: Unbinned PMT, polynomial A.R. timetof < $0.15 \mathrm{~ns}, 0.5<$ costh
32: 30 ($0.6<$ costh <0.8)
34: 30 (timetof < 0.25ns)
40: Unbinned PMT, binned A.R.
timetof $<0.15 \mathrm{~ns}$, costh >0.5
41: 40 (only central PMT)
42: 40 (first ring of PMTs)
43: 40 (second ring of PMTs)
44: 40 ($\mathrm{R}>100 \mathrm{~cm}$)
46: 40 (timetof < 0.25ns)
47: 40 (timetof < 0.05ns)

Geometrical check where there is known shadowing

Top: total number of PMTs closer to the line of sight than $\mathrm{h}_{\text {mрмт }}(27.2 \mathrm{~cm})$

Middle: total number of PMTs closer to the line of sight than $\mathrm{h}_{\mathrm{PMT}}(13.8 \mathrm{~cm})$

Bottom: total number of PMTs closer to the line of sight than $\mathrm{h}_{\text {РMT }} / 2(7.9 \mathrm{~cm})$

Nothing very obvious is coming out of this...

A. Craplet

Geometrical check where there is known shadowing

Top: total number of PMTs closer to the line of sight than $h_{\text {mPMT }}(27.2 \mathrm{~cm})$

Middle: total number of PMTs closer to the line of sight than $\mathrm{h}_{\mathrm{PMT}}(13.8 \mathrm{~cm})$

Bottom: total number of PMTs closer to the line of sight than $\mathrm{h}_{\mathrm{PMT}} / 2(7.9 \mathrm{~cm})$

Nothing very obvious is coming out of this...
χ^{2} per PMT as a function of how many PMTs are within a certain range of
the photon trajectory $(A=5 \mathrm{~cm}, B=2.5 \mathrm{~cm}, C=1.25 \mathrm{~cm})$ - Source position

Investigation of alpha estimate

$\Delta \alpha=\alpha_{\text {alpha fixed at true value, norm fitted }}-\alpha_{\text {alpha fitted, norm fixed @ best fit value obtained from previous fit where } \alpha \text { was fixed @ its true value }}$ $\Delta X^{2}=X^{2}$ alpha fixed at true value, norm fitted $-X_{\text {alpha fitted, norm fixed @ best fit value obtained from previous fit where } a \text { was fixed } @ \text { its true }}$ value

Unibinned fit (1333 bins) Source in pos 2	$\Delta \alpha$	ΔX^{2}
10 bins in costh $[0.5,1.01]$	$6677.84-4103.64$ $=2574.20 \mathrm{~cm}$	$3369-3266$ $=103$
20 bins in costh $[0.5,1.01]$	$6677.84-3758.36$ $=2919.48 \mathrm{~cm}$	$2224-2101$ $=123$

It looks like more freedom in the angular response fits the distribution better but biases against α which is then fitted further away from its true value. Too many Θ-dependant fit parameters?

In this case the three rings parameterization was used.

Best fit norm (alpha fixed) is quite far from the calculated value (~70\% smaller -> did I forget Q.E.?)

Other investigations - cos(theta) portions @ 401.9nm

Fit PMTs: unbinned, Angular response: polynomial

Other investigations - cos(theta) portions @ 353.7nm

Fit PMTs: unbinned, Angular response: polynomial

Other investigations - cos(theta) portions pos 1 with 2 mPMTs removed

Fit PMTs: unbinned, Angular response: polynomial

No DN		FL3	FL3a	FL3b	FL3c
401nm-pos5 alpha $=66.8 \mathrm{~m}$	$\begin{gathered} \text { chin } \\ \text { alpha } \end{gathered}$				
401nm-pos5 alpha $=2.5 m$	$\underset{\substack{\text { chir } \\ \text { apha }}}{ }$				
401nm-pos5 alpha $=10.0 \mathrm{~m}$	$\underset{\substack{\text { chin } \\ \text { alpha }}}{\text { chen }}$				

Other investigations - ring selection @ 401.9nm

pos 2

No DN		FL4	FL4a	FL4b	FL4c
	${ }_{\substack{\text { chin } \\ \text { apha }}}^{\text {a }}$				
	${ }_{\substack{\text { chin } \\ \text { apha }}}^{\text {a }}$				
(entinmos2	${ }_{\substack{\text { chin } \\ \text { apha }}}^{\text {a }}$				

Fit:
Unbinned PMTs
Binned angular response (20 bins) $0.5<$ costh <1.01

pos 5					
No DN		$F L 4$	$F L 4 a$	$F L 4 b$	$F L 4 C$
401nm-pos2 alpha $=66.8 \mathrm{~m}$	chi2 alpha				
401nm-pos2 alpha $=2.5 \mathrm{~m}$	chi2 alpha				
401nm-pos2 alpha $=10.0 \mathrm{~m}$	chi2 alpha				

pos 1-2mPMT masked

No DN		FL4	FL4a	FL4b	FL4c
$401 \mathrm{~nm}-$ pos 2 alpha $=66.8 \mathrm{~m}$ alpha $=66.8 \mathrm{~m}$	$\begin{gathered} \text { chir } \\ \text { alpha } \end{gathered}$				
401nm-pos2 and dhh 2 alpha $=2.5 \mathrm{~m}$	$\begin{gathered} \text { chin } \\ \text { alpha } \end{gathered}$				
401nm-pos2 alpha $=10.0 \mathrm{~m}$	$\begin{gathered} \text { chin } \\ \text { alpha } \end{gathered}$				

Other Investigations - Timetof cuts @ 401.9nm

No DN		FL3	FL3d	FL3e	FL4	FL4f	FL4g
401nm-pos5 alpha $=66.8 \mathrm{~m}$	${ }_{\text {chir }}^{\text {chipa }}$						
401nm-pos5 alpha $=2.5 \mathrm{~m}$	$\begin{gathered} \text { chir } \\ \text { apha } \end{gathered}$						
401nm-pos5 alpha $=10.0 \mathrm{~m}$	$\begin{gathered} \text { chin } \\ \text { alpha } \end{gathered}$						

PMT: unbined	0.05 ns	0.15 ns	0.25 ns
Angular response polynomial	FL3e	FL3	FL3d
Angular response binned	FL4g	FL4	FL4f

pos 1-401.9nm

No DN		FL3	FL3d	FL3e	FL4	FL4f	FL4g
401nm-pos2 alpha $=66.8 \mathrm{~m}$	$\begin{gathered} \text { chin } \\ \text { alpha } \end{gathered}$						
401nm-pos2 alpha $=2.5 \mathrm{~m}$	$\underset{\substack{\text { chip } \\ \text { apha }}}{ }$						
401nm-pos2 alpha $=10.0 \mathrm{~m}$	$\begin{gathered} \text { chin } \\ \text { alpha } \end{gathered}$						

No DN		FL3	FL3d	FL3e	FL4	FL4f	FL4g
401nm-pos5 alpha $=66.8$	chi2 alpha						
401nm-pos55 alpha $=2.5 m$	chi2 alpha						
401nm-pos5 alpha $=1500$	chi2 alpha						
alphe							

Timing calibration - Results

The source at centre of the detector provides better calibration than when on more extreme positions.

Geometry comparison - $16 \mathrm{c} 4 \mathrm{r} t_{D}^{16 c 4 r} \sim G(0.25,0.08)$ similar to $16 c 5 r t_{D}^{16 c 5 r} \sim G(0.25,0.06)$ for source at the centre of the tank.

Fit failures -125 cm away from centre of the tank

Fit failures - 146 cm away from centre of the tank

Explanation: shadowing by the mPMT surface

- Assumed that the PMT point in WCSim is at the centre of the height of the mPMT module

- Light absorption by outside mPMT surface
- No excess p.e. recorded at mPMT2 - expect that the light is absorbed by outer cover and not detected by the mPMT2 module's PMTs

Fix1: lowering the source

Instead of pos1: [-75, 100, -75] Have source at pos 28: [-75, 80, -75]

Also improves the PMT coverage!

Long term fix: Option 1: very conservative source position
(-100

Issues:

- reduces our R range

Advantage:

- faster calibration procedure

Geometry

Time tof

