# Status of Application of ML techniques in IWCD and WCTE

**WCTE Collaboration Meeting Updates** 

Date: 22 July 2022

Speakers-Tanima Mondal Sunanda Arnab Sarker



# **Motivation**

- The Machine learning (ML) technique is an effective tool to deduce detailed information from a complex image.
- ML techniques has wide application in:
  - Particle type identification
  - Reconstruction of single/multi-ring events
  - Reconstruction of particle kinematic variables
- ML ResNet model shows significant performance over fiTQun.
- The performance of ResNet Model is analysed using IWCD geometry for particle gun events.
- ML techniques will be applied to the IWCD event selection and WCTE particle gun dataset.

# Intermediate Water Cherenkov Detector(IWCD)

- IWCD is a sub-kiloton scale water Cherenkov detector.
- Nominally designed to measure neutrino interactions before oscillation effect is significant.
- Vertical Moving detector, 1-4 degrees off-axis spanning.

#### **Rebaseline of IWCD geometry:**

|               | Current Geometry    |  |  |  |  |
|---------------|---------------------|--|--|--|--|
| ID Radius     | 400 cm              |  |  |  |  |
| ID HalfLength | 300 cm              |  |  |  |  |
| Baseline      | ~ 750 m from source |  |  |  |  |

#### **Physics Goals for Rebaseline:**

- Study neutrino interaction rate peaked at different energies, higher precision.
- To identify ~1% of anti(neutrino)  $v_{p}$  components in the beam.
- Mitigate neutrino beam pile up events.



#### Figure: IWCD Detector (Short tank geometry)



## **IWCD** constraint:

- Conventional neutrino beam contains only  $1.5\% v_{p}$ , challenging to measure  $v_{p}$  cross-section.
- The electron (anti)neutrino intrinsic fluxes produce single-ring electron (1Re) samples, use to constrain cross-section ratio of  $\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$ ,  $\sigma_{\bar{\nu}_e}/\sigma_{\bar{\nu}_{\mu}}$

## **Current Progress with IWCD:**

Analysing fiTQun PID performance for IWCD current geometry to study  $v_{e}$  event samples.



fitQun: Evaluates best-fit likelihood

#### **Cut tuning :**

Separate signal from Background

e-
$$\mu$$
 cut:  
LR = ln  $(L(e)/L(\mu))$   
 $\pi^{0}$ -e cut:  
LR = ln  $(L(\pi^{0})/L(e))$ 

## Selection overview for e-mu cut:



Figure: Distribution of events in reconstructed electron-muon likelihood ratio vs reconstructed lepton Momentum

True Event:  $CCo\pi v_e$ CC : NEUT Code < 30 Neutrino ID :  $v_e$  = 12 (PDG) Towall Cut > 50 cm Dwall Cut > 75 cm IsOneRingCandidate event

**Background Event:**  $v_{\mu}$  CC CC : NEUT Code < 30 Neutrino ID :  $v_{\mu}$  = 14 (PDG) TruthMuonContainmentCut: a) Towall > 50 cm b) lepton mom p < 2 \* wall

### Selection overview for $\pi^0$ -e cut:

WCTE will measure properties of  $\pi \pm$ , and  $\pi^0$ s from charge exchange.



sig pi0 mass mom:Background

Figure: Distribution of events in reconstructed  $\pi^{\circ}$ -1 ring electron likelihood ratio Vs reconstructed  $\pi^{\circ}$  mass

True Event: CCoπv  $\succ$ CC: NEUT Code < 30 Neutrino ID :  $v_{p} = 12$  (PDG) Towall Cut > 50 cm Dwall Cut > 75 cm IsOneRingCandidate event

Background Event:  $NC\pi^{\circ}$  $\succ$ 

CC : NEUT Code > 30

2. Neutrino ID : 
$$\pi^{\circ}$$
 = 111 (PDG)

Towall > 50 cm 3.

 $\pi^{0}$ mass >50 Mev/c and LR >100

Cut line will be tuned for Current detector geometry

120

100

80

60

40

20

113.9

555.9

36.14

Aean 1

Std Dev x Std Dev y 322.1

## Machine learning Techniques

### **ResNet Model:**

- ResNet is a Convolutional Neural Network (CNN) architecture
- Solve Complex problems, stack some additional layers.
- Improve accuracy
- Boost the performance of Neural Network

#### **Application:**

Identifying four kinds of particle gun events (e<sup>-</sup>,  $\mu^-$ ,  $\gamma$ ,  $\pi^0$ ) simulated using WCSim software.

• Loss signifies how well the model is trained in corresponds to the actual data.





## **Results**

• With the short tank IWCD geometry, ResNet model is trained to distinguish between two classes of particle: e<sup>-</sup> and γ

#### Validating the events

- For each type of particles,
- ~ 9,000,000 events were produced for e<sup>-</sup>
- > ~ 9,000,000 events were produced for  $\gamma$





Figure: Predicting electron as a true particle and electron being classified as γ

#### • ROC curve: (2 Class)

Comparing ResNet and fiTQun performance in  $e^{-}/\gamma$  identification:

(fiTQun AUC: 0.5418, ResNet AUC: 0.7183)



## **Results**



**Ρ**(*μ*)

0.8

10

• Using ML techniques, NC components are already well separated from signal for IWCD preliminary geometry





Figure: Distribution of particles for 2-class and 4-class analysis

Ref. A.Oshlianskyi,'Electron neutrino analysis for IWCD long tank geometry for Hyper-Kamiokande experiment'

Signal efficiency and background rejection for fiTQun and Softmax cuts

|                | True $v_e  CC0\pi$ | True $v_e \ CC \ other$ | True NC  | True NC $\gamma$ | True NC $\pi^0$ | True $v_{e,ws}$ | True $v_{\mu,ws}$ | True $\nu_{\mu}$ |
|----------------|--------------------|-------------------------|----------|------------------|-----------------|-----------------|-------------------|------------------|
| Fraction       |                    |                         |          |                  |                 |                 |                   |                  |
| Softmax/fiTQun | 1.018306           | 0.991455                | 0.812033 | 1.054341         | 1.100492        | 1.034594        | 0.0               | 0.595286         |

- ML techniques will be applied to IWCD short tank data for signal-background separation
- Potential for tagged y beam at WCTE to verify e/y discrimination performace.

# Water Cherenkov Test Experiment (WCTE)

- A 50 ton scale proposed water Cherenkov detector which will operate at CERN T9 beam.
- Part of Hyper-K development program for the IWCD
- Study detector calibration & response with known particle fluxes of 0.2 GeV/c - 1 GeV/c

#### **Current Geometry**

Cylinder Height ~ 3.40m Cylinder Radius ~ 1.90m Number of mPMT's ~ 102

#### **Physics Goals**

- $\circ~$  Test and evaluate IWCD performance with new technologies.
- $\circ\,$  Reduce Detector Systematics Error in Water Cherenkov Detectors.
- Develop better calibration techniques.
- $\circ~$  Test Event reconstruction performance with mPMT's modules.



## **Detector Dimensions & Beam Configurations**

- Reduction of detector dimension (to fit the wall and ceiling)
- Reconstruction performance remains unhampered

| Config                              | Columns | Rows | Height (mm) | Diameter (mm) | ID height (mm) | ID diameter (mm) |
|-------------------------------------|---------|------|-------------|---------------|----------------|------------------|
| Original                            | 18      | 5    | 4320        | 4022          | 3539           | 3621             |
| Reduced diam 1                      | 18      | 5    | 4200        | 3800          | 3539           | 3439             |
| Reduced diam 2<br>(16c-5r)          | 16      | 5    | 4200        | 3800          | 3539           | 3427             |
| Reduced height<br>and diam (16c-4r) | 16      | 4    | 3400        | 3800          | 2739           | 3427             |



Fig. WCTE detector geometry



#### WCTE will run with two beam configuration

- Tertiary Beam (0.2 1.2 GeV/c)
  - Access low momentum pion and proton fluxes.
- Secondary Beam (~0.4 GeV/c to ~1.5 GeV/c)
  - Detector is set in the beam line.
  - Access  $e^{-}$ ,  $\mu^{-}$  and proton fluxes.

# Simulation of particles for WCTE

- WCTE/WCSim (<u>https://github.com/laurenanthony2/WCSim</u>)
- Using the Current geometry(4r,16c)

#Use mPMTs settings (uncomment/delete the above)
#/WCSim/WCgeom nuPRISM\_mPMT
#/WCSim/WCgeom nuPRISMBeamTest\_mPMT ## this is 18c5r from the original design
#/WCSim/WCgeom nuPRISMBeamTest\_18c\_mPMT ## this is 18c5r from CAD
#/WCSim/WCgeom nuPRISMBeamTest\_16cShort\_mPMT ## this is 16c4r from CAD
#/WCSim/WCgeom nuPRISMShort\_mPMT

- A visualization of the run is shown in the figure.
- Run simulation for 1 million  $e^{-}$  and  $\mu^{-}$  events.
  - Energy uniformly spread over 0 1000 MeV
  - Point of origin uniformly spread over the detector.
  - Uniformly spread over  $\phi$  and  $\cos\theta$ .
- Conversion of *wcsim.root* files to .npz
- And *.npz* file to *.h5* file for direct use in Machine learning.

#### Using the WCTE geometry



## **Current Progress with WCTE**

- Data generation of 1 million  $e^-$  and  $\mu^-$  events is completed.
- Simulated events- used for Machine Learning(ML) training.
- Development of the ML pipeline.

### Data Exploration: Validating the events generated from the .h5 datafile

#### Energy Distribution Plots

- Generated e<sup>-</sup> and µ<sup>-</sup> events (Each 1 million)
- Uniformly distributed Energy between 0 1 GeV



#### > Angle( $\theta, \phi$ ) Distribution Plots

- Events are isotropically distributed over  $\theta$
- Uniformly distributed over φ



#### > Position(x, Height, z) Distribution Plots

- Point of origin is uniformly distributed over the cylinder height.
- **R<sup>2</sup>** is uniform from the simulation
- Uniformly distributed over XZ-plane



## **ML Pipeline Preparation**

- Pipeline will help in better implementation of the ML model.
- Initial steps
  - Preparing the Data.
  - Mapping PMT's in 3D detector to a 2D Image.
  - Start the ML model building.





## Future Plan of Work

### IWCD

- □ Analyse fiTQun particle identification techniques over current IWCD production.
- **Produce new training sample based on IWCD new detector geometry, to train ML ResNet Model.**
- **□** Eventually applying ML PID techniques to IWCD event selection.

### WCTE

- **Development of ML data pipeline.**
- $\hfill \square$  Initiate ML training with 1 million  $e^{-}$  and  $\mu^{-}$  events data.
- □ Finally, apply Machine Learning Algorithms
  - → For Event Reconstruction
  - → Particle Identification Analysis.

### Acknowledgement

Akira Konaka

Debanjan Bose

Lauren Anthony

Moon Moon Devi

Nick Prouse

Patrick De Perio

Reetanjali Moharana

Ryosuke Akutsu

Xiaoyue Li

# **Thank You for your attention!**