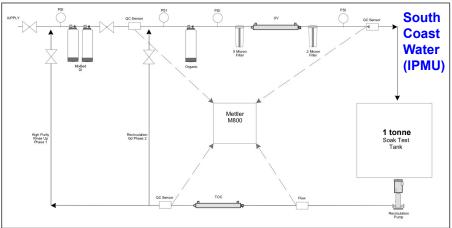
Water System Status

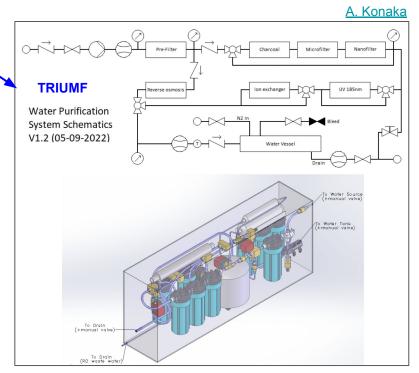
Patrick de Perio (for the Water Group) WCTE Collaboration Meeting July 19, 2022

Introduction

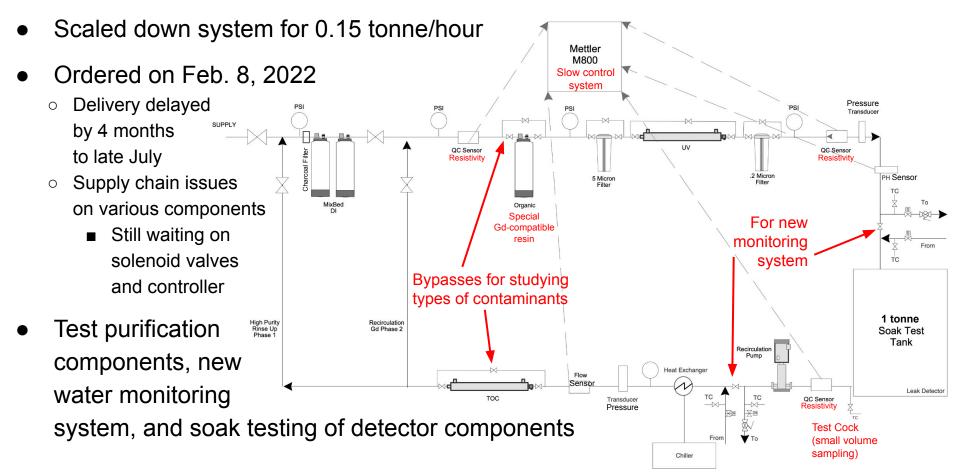
- Water is one of the major components of the detector we need to control
- Aim to develop a minimal (cost & size) water purification system for WCTE and IWCD
- Largely based on successful techniques from Super-K
 - WCTE is smaller
 - \rightarrow Less stringent transparency requirements
 - \circ However, larger surface area to volume ratio \rightarrow More contaminants
 - And potentially higher temperature ~17°C
 - \rightarrow More bacteria

Water Cherenkov Test Experiment (WCTE)



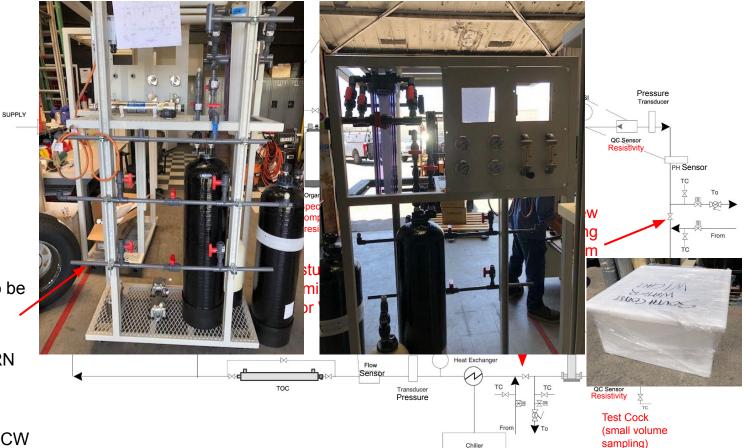

40 tonne

2 t/hr flow (1 day turnover)


Candidate Detector Water Purification Systems

- Continuing consultations with two companies so far:
 - 1. South Coast Water (USA) designing smaller (0.15 t/hr) R&D/soak-test system for IPMU/ICRR
 - 2. Taiyo Giken (Japan)
- Investigating cost reduction by building ourselves with individual components
- Plan to extend to WCTE (2 t/hr) based on what we learn

SCW Company: IPMU Test Bench (Prototype) System



SCW Company: IPMU Test Bench (Prototype) System

Photos of current assembly at SCW, preparing for shipment this week

PVC piping would need to be replaced by non-halogen, / non-phosphorous flame retardant plastic with CERN approval

 Polypropylene recommended by SCW

Water Temperature Control

- Currently no AC in experimental area
 - Room temperature >25°C?
- ASONE LTCi-400A (Japan) approved by SCW as compatible
 - Delivered to IPMU and to be tested this summer
 - Cooling capacity: 400 W
 - Pump capacity: 4 L/min
 - Consumption: 850 W
 - Price: 3000 USD

• WCTE candidate: ASONE MTC-3000

- Cooling capacity: 3 kW
 - mPMTs: 20W * 100 ~ 2 kW
- Pump capacity: 2.4 t/hr
- Consumption: 1600 W
- Price: 5000 USD
- Insulation around the tank?

WCTE Gadolinium Systems

- Aiming for 0.2% mass $Gd_2(SO_4)_3 \cdot 8H_2O \rightarrow 100$ kg for 50 t water
- Would need ~60L of Gd-compatible water purification resin
 - In consultation with Super-K/EGADS regarding procurement of above two

Removing Gd

Gd

Removal

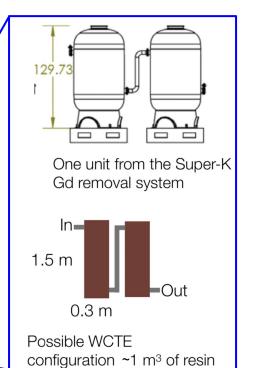
Resin

Water

purification

system

- Loading/removal systems need technical design and procedure soon for CERN safety review
 - SCW also built the EGADS systems


Water

purification

system

 $\blacksquare \quad \mbox{Requires 600L of Na ResinTech (US) CG8} \rightarrow 3k \ \mbox{USD}$

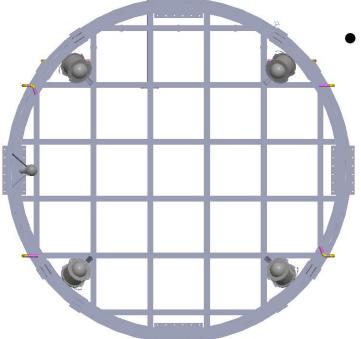
WCTE

Loading Gd

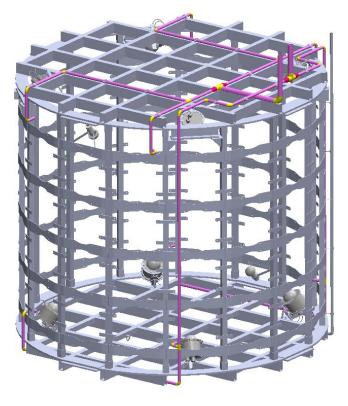
Funnel for

pouring salt

WCTE

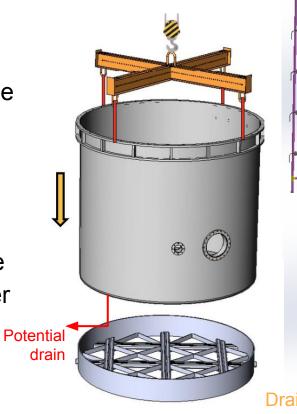

Scaling to WCTE

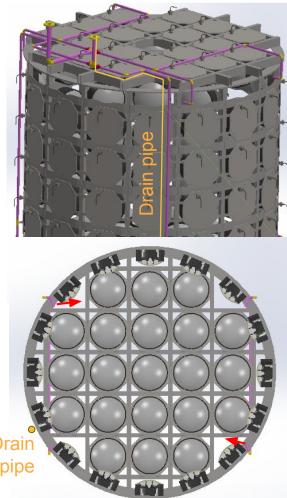
- After commissioning IPMU system, start working with SCW (and/or Japanese) company to design WCTE system
 - \circ Scaling from 0.15 \rightarrow 2 t/hr: pump, purification components, resin tanks, pump, chiller
 - Initial estimate = 210k USD
 - Can we get away with a less performant system for WCTE?
 - For example, SCW is now determining reduction in flow and filtration performance for a reduced budget of 100k USD


	2022			2023						2024	
Task	July	Sept	Nov	Jan	March	May	July	Sept	Nov	Jan	March
Water System											
Prototype testing	IPMU Prototype	e									
Design		WCTE Design									
Production					Production						
Ship system to CERN								Ship to CERN			
Assemble system at CERN									Assemble/com	mission system	
											Start WCT

Water-Detector Interface: Plumbing

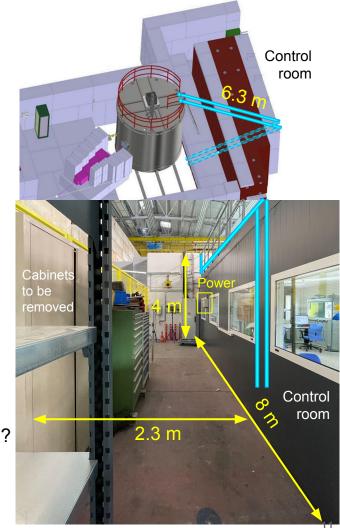
- Design by Spanish group (<u>M.M. Slabu</u>)
 - $\circ~~5$ cm diameter pipe for main lines \rightarrow 2.5 cm for inlet/outlet
 - \circ $\,$ Material likely stainless steel ~30 m \rightarrow 1000 USD $\,$
 - Plus flanges, orifice plates, mounting brackets, etc.

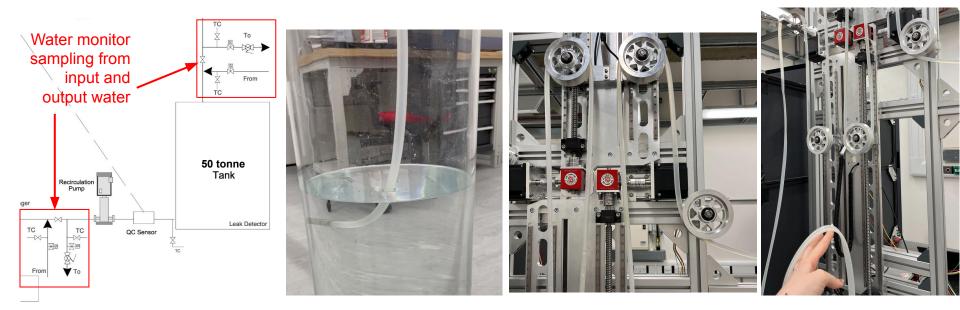

- Horizontal-facing inlet/outlets to avoid vertical turbulence
 - Face the same direction around the circumference to avoid colliding streams



• Assembly procedure design in progress

Water-Tank Interface: Drainage


- Interference with the base and movement system makes a simple drain at the bottom of the tank difficult
 - If the tank does not need to move, simple drain may be possible
- Nominally add another line (orange) for pumping water out to drain


Water-CERN Facility Interface

- Following info to be determined at CERN this week
- Need more precise dimensions of available space, height of wall, distances to flanges on detector lid,
- Location of DI water source for initial filling
- Location of water drain
 - To optimize positioning of drain in tank
- Any disposal limitations on Gd or Na₂SO₄ concentration in the waste water?
 - <0.5 ppb Gd concentration was achieved in EGADS
 - Sodium sulfate is nominally 3xGd
 - Main component of laundry detergent, so probably fine?
- Power requirements to be determined after SCW design

Water-Calibration Interface

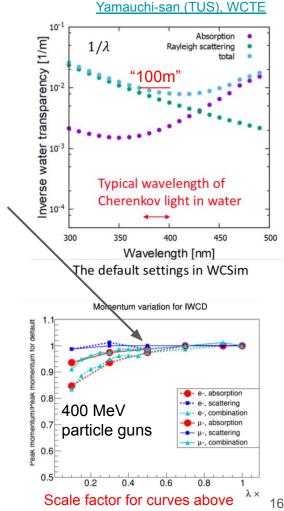
- 1. Ports designed for sampling directly from circulation loop
- 2. Sampling from tube deployed via CDS to allow position dependent water quality measurements
 - Initial siphon testing with Tygon tubing through CDS successful
 - However, tube collapsed with vacuum pump (need slower pump and/or more rigid tube)

WCTE Budget Summary

- Currently 40k USD available between Sweden+Japan, must be spent this year
 - Applying for more funding in Japan, to be available April 2023
 - Additional contributions welcome

<u>Component</u>	Estimated (kUSD)	Committed?	
Purification system (SCW)	100 - 210	Japan? + ?	
Chiller	5 - 10		
Gd-compatible resin*	5	Japan?	
Gd mixing tank (SCW)	?		
Gd-sulfate*	5 - 20	Japan?	
Gd removal (SCW)	6		
Na Resin	3		
Detector+Facility plumbing	2 - 3		

*Some minimum purchase required


Summary

- WCTE water system design and company consultations underway
 - Visiting CERN now to finalize some details, especially facility interfaces
 - Gd component consultations with Super-K
 - Progress on interface to calibration
- WCTE should be able to perform with scaled down (smaller & cheaper) water system than Super-K
 - IPMU R&D test bench this summer to help answer this question
- Need responsible groups for cost/effort sharing of major components

Appendix

Water Transparency Requirement

- Check effect of increasing light scattering and absorption in detector simulation with e/µ particle gun
 - Super-K "100m" attenuation length model (right) assumed as nominal
 - Scale the curves by factor λ and check effect on e.g. reconstructed momentum
- Indication of performance degradation below "50m" att. length
 - Small, but correlated with all other reconstructed variables (PID, pos, dir)
 - Want to be able to make any impact negligible
 - Momentum can be corrected for *on average*, but water parameters degenerate with other detector parameters like PMT response
 - Want to minimize these degeneracies
- Aim for "50m" attenuation length capable purification system
 - Can always study worse cases by reducing flow
 - However, difficult to predict quantitatively since no well-understood water purification theory and largely dependent on actual materials immersed
- WCTE (IWCD) are 1/10 (1/4) smaller diameter than SK
 - Can probably get away with cheaper, smaller system

EGADS Example (https://arxiv.org/abs/1908.11532)

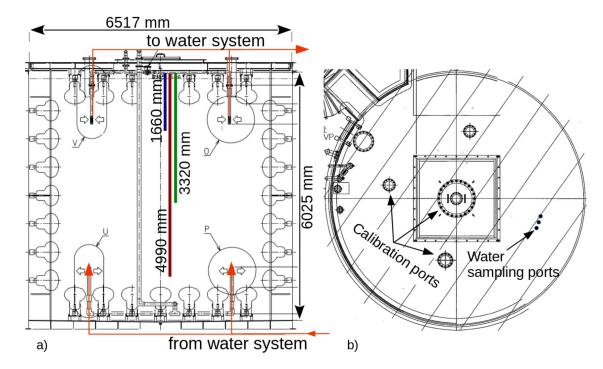
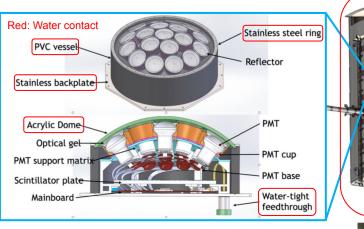



Figure 5: Left a) schematic view of the EGADS tank, its sampling ports (bottom, centre and top at 4990, 3320, and 1660 mm from the tank-top) and inflow and outflow from and to the water purification systems. Right b) top view of the EGADS tank with its calibration and water sampling ports.

Materials in Water

- Care about rate of impurities dissolving (elution) in water from all materials
- Surface area estimates:
 - $Tank = 64m^2 = 23m^2$ (endcaps) + 41m² (barrel) 0
 - Support structure = ? 0
 - 106 mPMTs = $74m^2$ = [0.20m² (SS) + 0.27m² (PVC) + 0.23m² (acrylic)] x 106 0
 - ID Blacksheet = $27m^2$ 0

11 cm

