

CDS and Laser Diffuser Ball

WCTE Collaboration Meeting 22/07/22

Lauren Anthony

l.anthony@imperial.ac.uk

CDS Overview

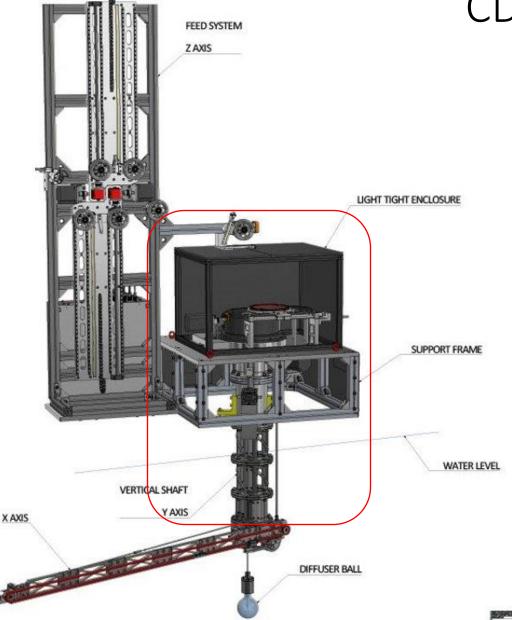
L. Anthony

CDS WCTE collab 22/07/22

Designed for calibration sources to be interchangeable

<u>Z Axis – <mark>92%</mark> complete</u>

- Encoders to be added
- Electronics cabinet to be added


Y Axis – 70% complete

- Vertical shaft to be manuf.
- Dark box to be built / small frame to raise up
- Encoder to be fitted

X Axis - 60% complete

- Modification to arm stiffness
- To be remade in SS316 (prototype is Al)

Software and GUI to be developed by LA / OJ & Alie, Yassine

CDS Overview

CDS WCTE collab 22/07/22

Designed for calibration sources to be interchangeable

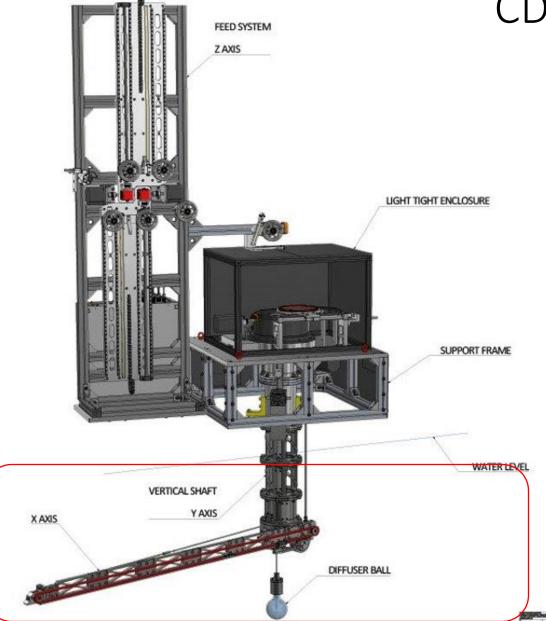
<u>Z Axis – <mark>92%</mark> complete</u>

• Electronics cabinet to be added

Y Axis – 70% complete

- Vertical shaft to be manuf.
- Dark box to be built / small frame to raise up
- Encoder to be fitted

X Axis - 60% complete


- Modification to arm stiffness
- To be remade in SS316 (prototype is Al)

General

L. Anthony

Encoders still to be integrated with electronics

Software and GUI to be developed by LA / OJ & Alie, Yassine

CDS Overview

L. Anthony

CDS WCTE collab 22/07/22

Designed for calibration sources to be interchangeable

<u>Z Axis – <mark>92%</mark> complete</u>

- Encoders to be added
- Electronics cabinet to be added

Y Axis – 70% complete

- Vertical shaft to be manuf.
- Dark box to be built / small frame to raise up
- Encoder to be fitted

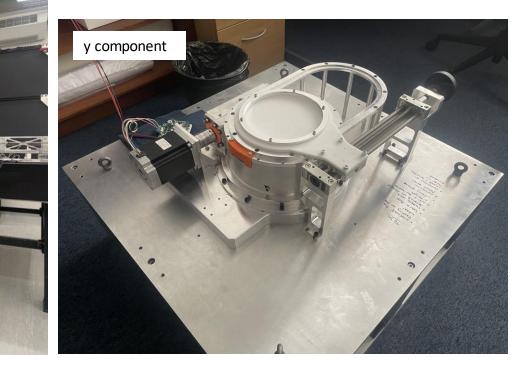
X Axis - 60% complete

- Modification to arm stiffness
- To be remade in SS316 (prototype is Al)

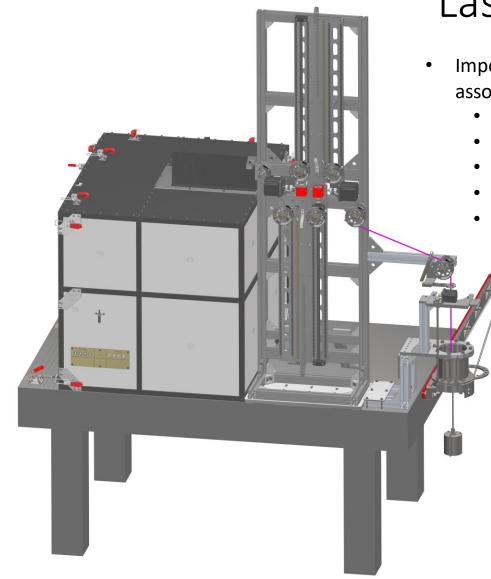
Software and GUI to be developed by LA / OJ & Alie, Yassine

CDS WCTE collab 22/07/22

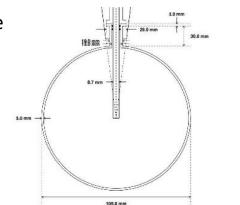
Current Status in Lab

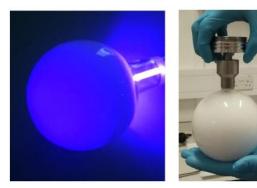


CDS WCTE collab 22/07/22


CDS prototype

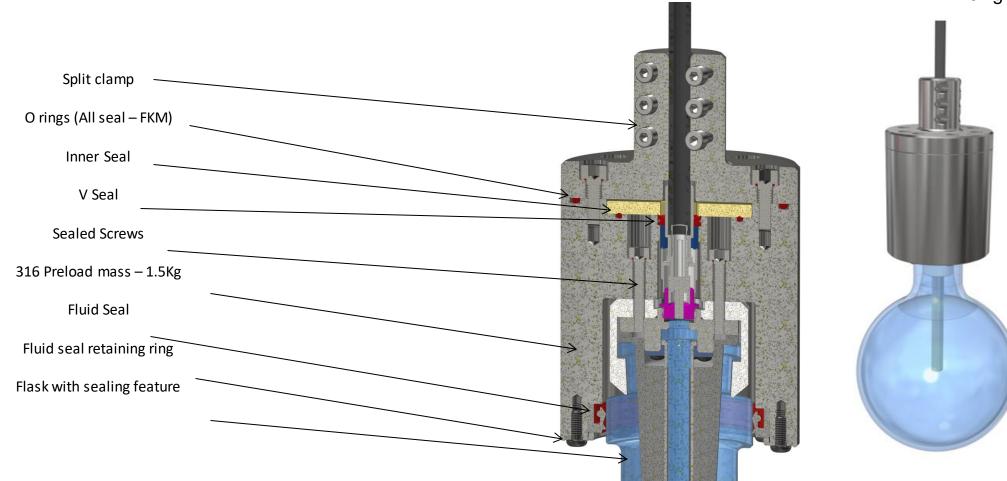
- X and Z components built in lab and motors wired in ٠
- Y component built separately ٠
- Laser ball deployment test stand also in place ٠

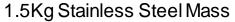


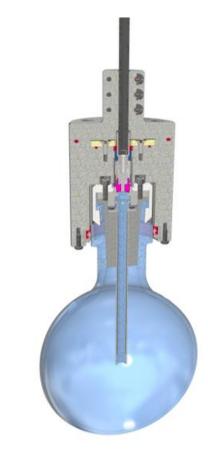

CDS WCTE collab 22/07/22

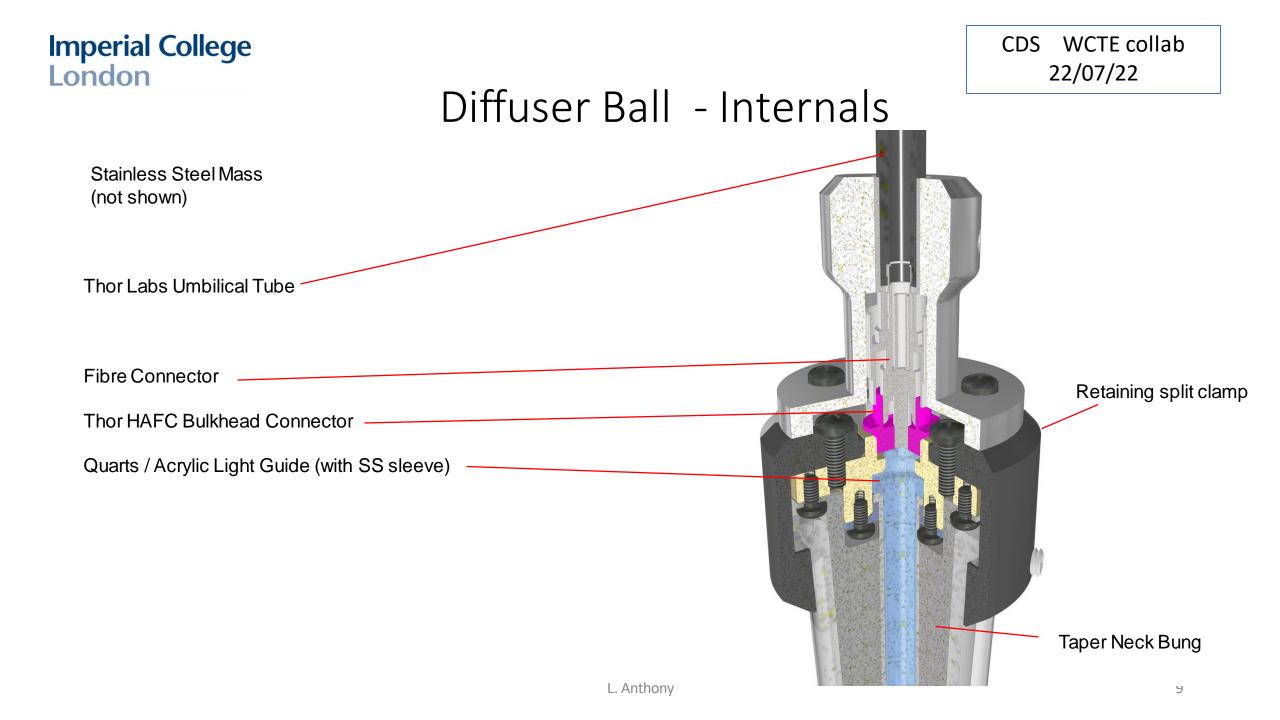
Laser Ball Development

- Imperial group is designing/fabricating a laser diffuser ball and associated deployment system for HK/IWCD/WCTE to measure:
 - Geometry
 - Water See Alie's talk in the analysis session
 - Reflections
 - PMT response
 - Timing

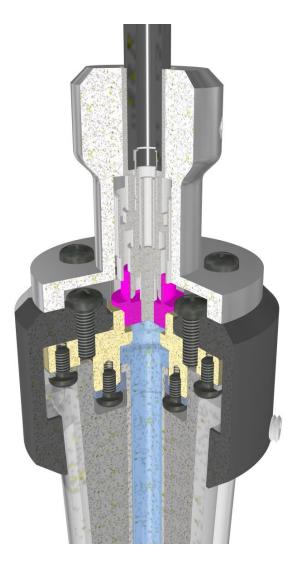


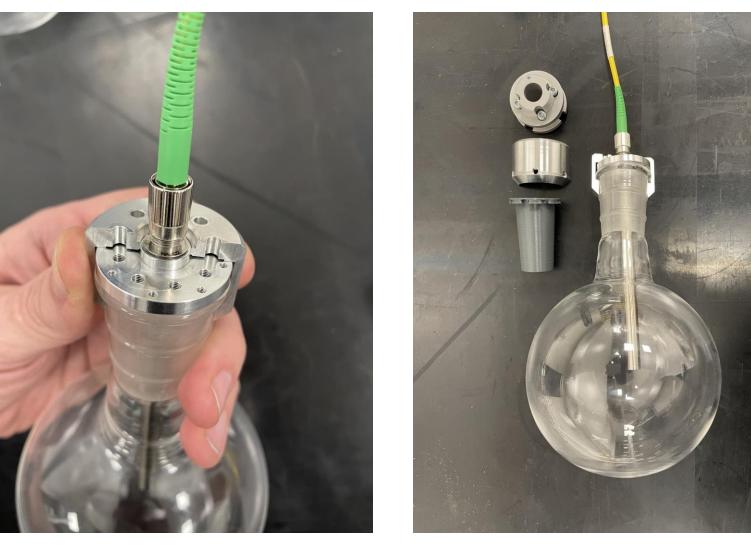

- Build on SNO/SNO+/DEAP3600 design
 - Quartz flask
 - Suspended glass spheres
 - Optical gel
- Using WACKER silgel
 - 612 (softer setting)
 - 604 (harder setting)
 - 3M glass microspheres @ 0.4% by mass



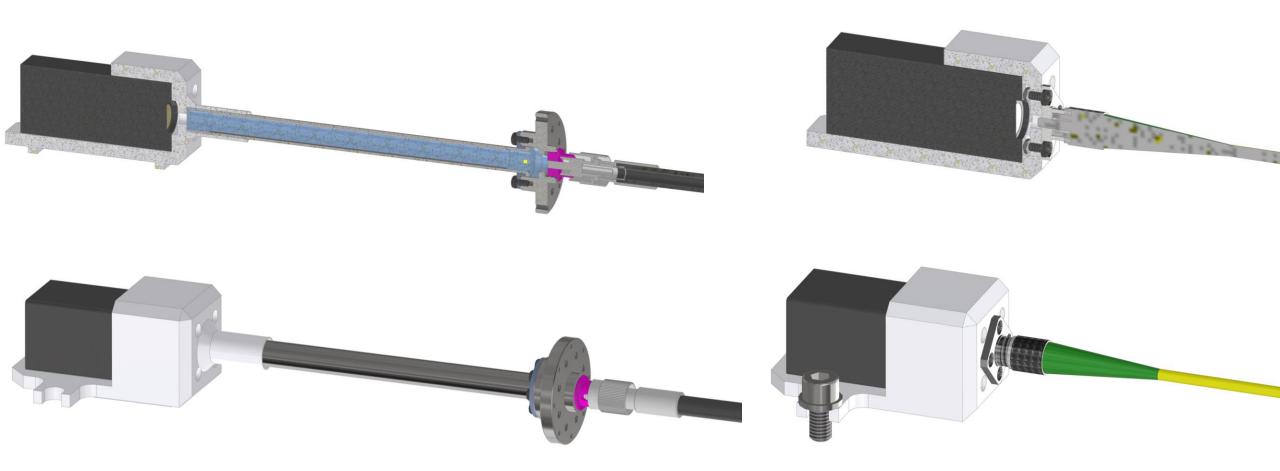

CDS WCTE collab 22/07/22

Diffuser Ball - Design





CDS WCTE collab 22/07/22



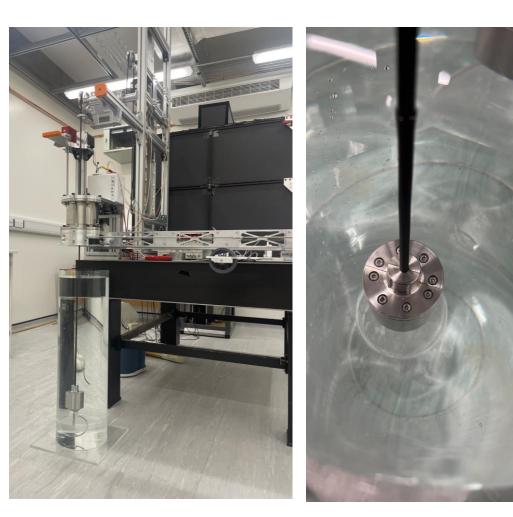
Diffuser Ball Development

CDS WCTE collab 22/07/22

Light Loss Test

CDS WCTE collab 22/07/22

Laser Ball Prototype


Araldite uniform stainless 40mm collar to seal around

Ball filled with water in images for buoyancy and immersion test

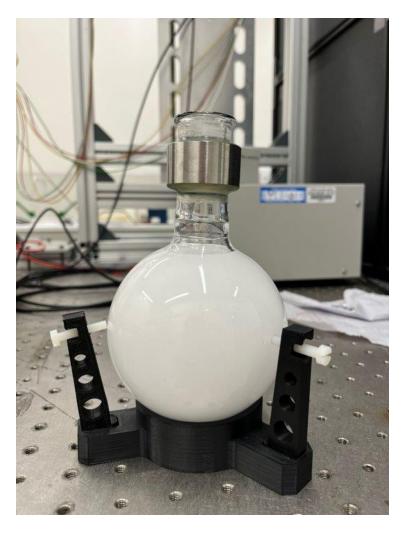
L. Anthony

Laser Ball Buoyancy Testing

- Drop of laser ball is smooth, no sway
 - Controlled drop using motor
- Umbilical doesn't slip when wet and retains grip on Al rollers
- Submerged laser ball overnight
 - Used standard screws rather than screws with incorporated seal
 - Some water ingress however was expected
 - Next step is to do more comprehensive submersion test and add tamper stickers within pre-load

WCTE collab

22/07/22


CDS

CDS WCTE collab 22/07/22

Status of laser ball prototype

- First prototype of laser ball started used WACKER optical gel 612 soft setting
- Will insert light guide later
- 109 mm Quartz flask
- Will make prototypes with different flask diam. and variations in light guide exposure within gel
- Remainder of gel ~ 3 kg of each gel, one laser ball ~ 0.5 kg
 - Enough to make 6 units
 - Gel difficult to get hold of
 - Other companies stopped producing/too expensive

CDS WCTE collab 22/07/22

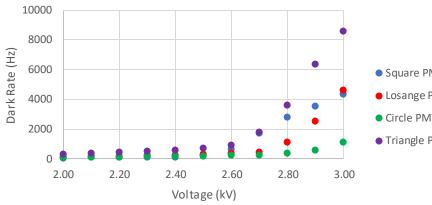
Characterization of Prototype

-2.52 -2.54 -2.56

-2.58 -2.6

-2.62 -2.64

-2.66


-2.68

-2.7

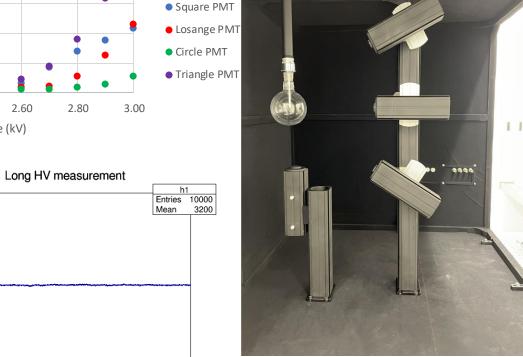
Ithony

Y. Alj Hakim

- Using dark box that was built last year
- Characterizing the 4 PMTs which will be used to characterize the laser ball
 - Find beast operating voltage based on dark rate and gain
 - Confirm dark box is light tight

1 1 1 1

3000


4000

5000

6000

Time [s]

2000

Dark Rate Losange PMT Dark Rate Losange PMT Dark Hate [Hz] h1 h1 [^국 40 Entries 1500 1500 Entries 7509 Mean 7437 Mean 980 ge 450 280 260 240 220 200¹ 2000 4000 6000 8000 10000 12000 14000 2000

Time (s

Dark Rate

CDS WCTE collab 22/07/22

- Initially estimated 27 positions for full calibration
- Approximately 5h to run
- Can likely be optimised with further analysis
 - Work by Alie can show how we can get uniform coverage of mPMTs
- Likely different requirements for timing and attenuation length analysis.

Calibration Sequence

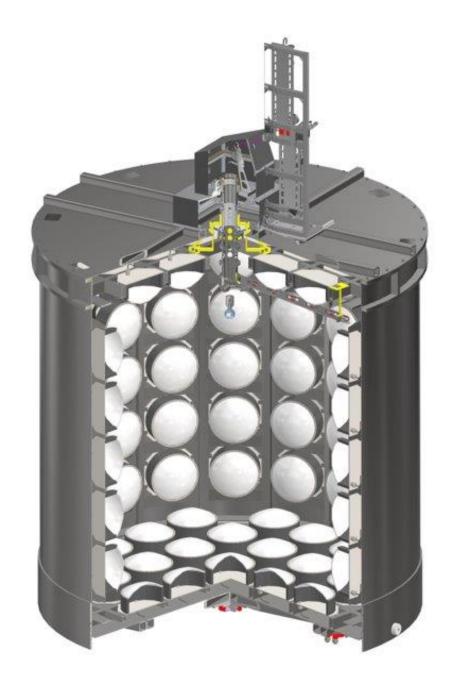
X Axis - Along Ar	m									
Axis - LB in De	pth of Detector			Ax	is Posit	ion	In Seconds	In Seconds		
Axis	Position	Pos. Note	Opp No.	Y	x	z	Move Duration	Laser Pulse Duration	Notes	
Y1	0*	Park Position	0	¥1	144	Z1	0	x	Home position, arm, Car and LB at park position	
¥2	90"		1	¥1	315	Z3	120	600		
Y3	180°		2	¥1	48	Z2	20	600		
¥4	270°		3	¥1	XX	Z1	20	600		
			4	¥1	X2	Z3	80	600	car moves to half way pos, Z axis deploys to bottom	
8 1	0 mm	On Detector Centre Line	5	¥1	X2	Z2	20	600	LB moves from bottom to half way up tank	
X2	660 mm	Halfway along Arm	6	¥1	X2	Z1	20	600	LB moves to top of tank	
X3	1320 mm	At End of Arm	7	¥2	X3	Z3	60	600	Y axis moves through 90°	
			8	¥2	85	Z2	20	600		
Z1	0 mm	At Park Position	9	Y2	83	Z1	20	600		
Z2	~1350 mm	Half Way down Detector	10	¥2	X2	Z3	80	600		
Z3	~2700 mm	Bottom of the Detector	11	¥2	X2	Z2	20	600		
	(1.577.63140-m)		12	Y2	X2	Z1	20	600		
			13	Y3	23	Z3	60	600		
			14	¥3	335	Z2	20	600		
			15	Y3	88	Z1	20	600		
-			16	Y3	X2 ·	Z3	80	600		
1			17	Y3	X2	Z2	20	600		
			18	¥3	X2	Z1	20	600		
			19	¥4	33	Z3	60	600		
			20	¥4	88	Z2	20	600		
			21	¥4	33	Z1	20	600		
			22	¥4	X2	Z3	80	600		
			23	¥4	X2	Z2	20	600		
			24	¥4	X2	Z1	20	600	1	
			25	¥1	21	Z3	80	600		
			26	¥1	184	Z2	20	600		
			27	¥1	31	Z1	20	600		
						1				
									17260	Sec
							1060	16200	1932020	10000
									287.67	Min
						1	17.67			
						-	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		4.79	Hou
									12	
								-		

System Timeline

		Feb	_			_	_														_																				
				Mare		April 2 13 14 15 16 17						May			June					July					ugu				epte			October				Novembe					
	4	56	7	3 9	10	11 1	2 1	3 14	15	16	17 :	18	19	20 2	21 2	22 2	23 2	24 2	25 2	26 2	7 2	8 29	30	31	. 32	33	34	35	36	37	38	39	40 4	41 4	2 4	3 44	45	46 4	47 4	18 4	9 50
DB measurements																																									
characterise PMTs																																									
PMT laser measurement																																									
Light guide characterization																																									
program motor for DB																																									
characterize LBs (proto)																																									
final characterize																																									
LB Production																																									
Order new flask size																																									
make LBs (gels) (proto)																																									
Insert rods (proto)																																									
order clamp (proto) mat																																									
manufacture clamps (prototype)																																									
Redesign (if necessary)																																									
final manufacture (inc all comps)																																									
CDS																							-																		
Testing				1																				1															-		
get motors running	\square																																						-		
long term run test	\square						T																																		
bouyancy test	\square																																-		-				+	-	-
Redesign (if necessary)	\square											-			-	-							-												-				-		-
Final manufacture	\square			+								-			+	-										-	-								-				-	-	-
Assemply & test	\square			-																			-	1															-		-
Crates				-																				1									-								
shipping to CERN	\vdash			-				-				-			-		-				-	-	-	+	-														╋	_	

CDS WCTE collab 22/07/22

Summary and Next Steps

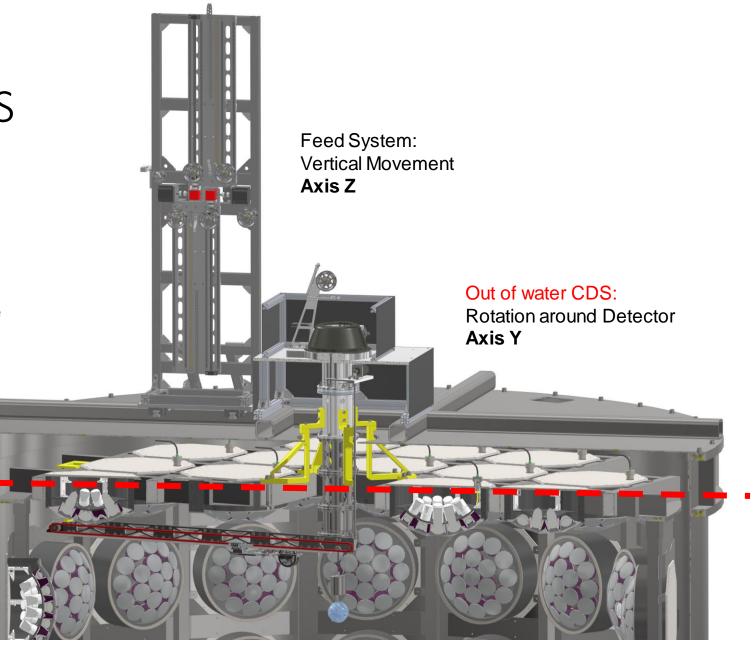

- Dark Box
 - PMTs almost fully characterized
 - Motor control work for laser ball rotation is started
- Diffuser ball
 - Buoyancy tests successful
 - Need further submersion tests
 - Make prototype laser ball in multiple sizes after potential redesign of preload
 - Designing and testing variations of the acrylic light guide
 - Rounded/flat finish, clear/frosted acrylic, flush or protruding acrylic
- Soak Tests
 - Soak testing all equipment to be used inside WCTE
 - Ready to analyze some samples (running late due to issues with spectrofluorometer)

CDS WCTE collab 22/07/22

Back Up

Reminder: WCTE

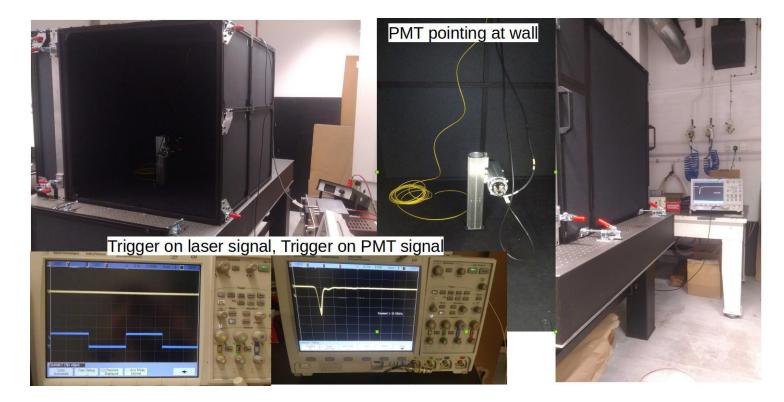
- Small scale Water Cherenkov (Test Experiment) detector to be commissioned at CERN in 2022/23
 - Potential to become platform for neutrino measurements at CERN
- Study detector systematics and response 200 MeV/c -1000 MeV/c
- ~4m * 4m cylindrical detector
 - Proposal document can be found here: <u>http://cds.cern.ch/record/2712416/files/?ln=en</u>
- Gadolinium sulphate doped

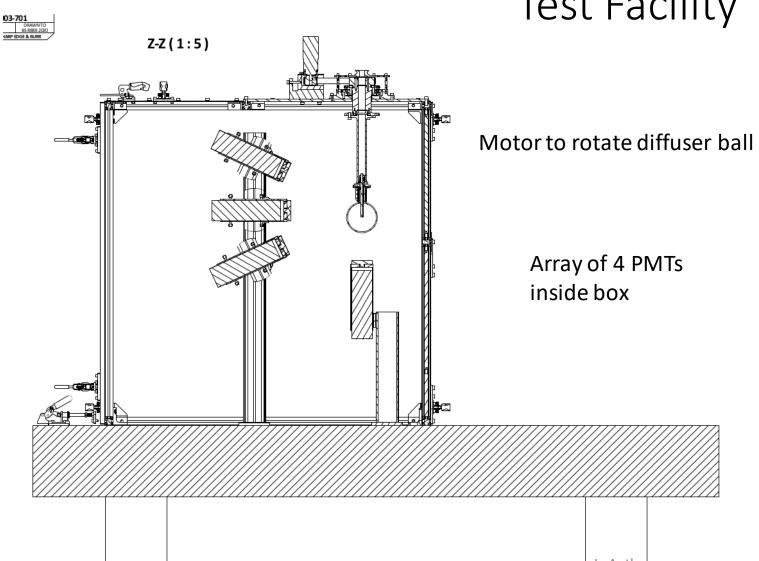

Reminder: CDS

CDS – Central Deployment System Designed for the Water Cherenkov Test Experiment

3 Axis System

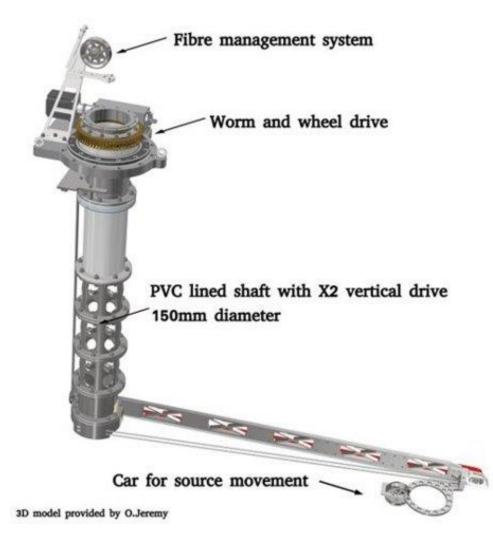
- X Laser ball from vertical center line, radially to edge
- Y Rotation around tank +/- 180 degree
- Z Laser Ball vertical +/- in tank

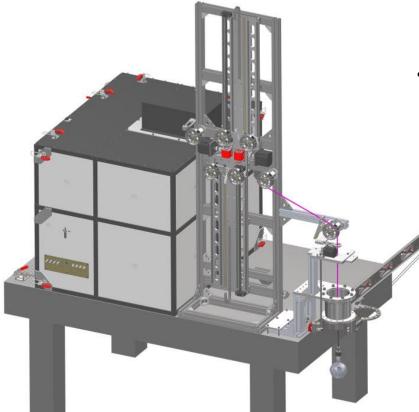



- Laser : Tamadenshi LBD 405-200
 - Coupled to 405nm ±5nm, 1→2 50/50 pure silica fibre splitter (Gooch & Housego/GouldFO)
- PMTs : 4 x Hamamatsu H2431-50
 - 0.36ns TTS
 - 0.8ns rise time
- Monitor PMT : 1 x Hamamatsu H10721-110
 - Same as monitor PMT used in UKLI system at SK

Lab Measurements

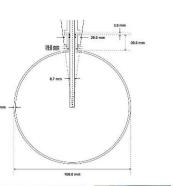
 Began characterization of PMTs back in December (Y. Al Hakim), however had to relocate experiment to a new lab which had some delays

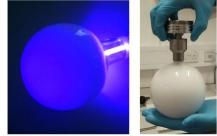


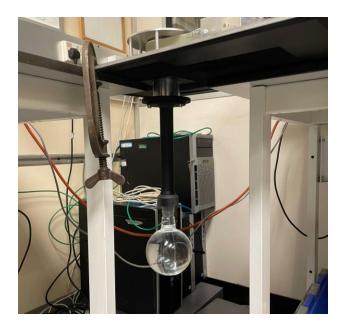

Test Facility

Detailed View of CDS

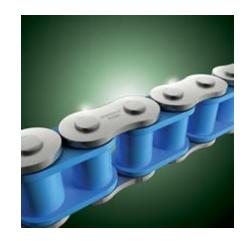
- Developing multi-axis system to deploy various calibration sources into the detector
- Movement in 3 axes
- Deploy sources at user defined calibration points
- Sources
 - Isotropic light source
 - Camera for photogrammetry
 - Radioactive source
- Other fixed source include mounted cameras and LED system (see slide 11)






Prototype Development

- Imperial group is designing/fabricating a laser diffuser ball and associated deployment system for HK/IWCD/WCTE to measure:
 - Geometry
 - Water
 - Reflections
 - PMT response
 - Timing

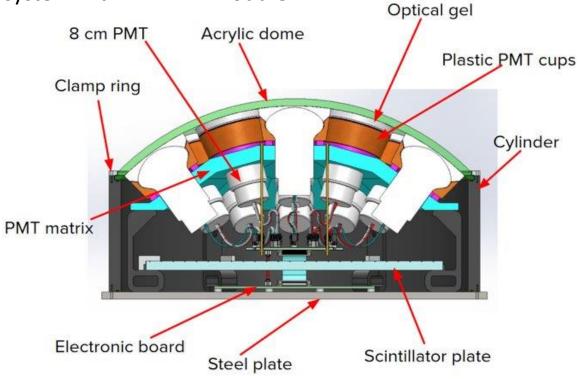

Laser Diffuser HK calib 17/02/22

- Build on SNO/SNO+/DEAP3600 design
 - Quartz flask
 - Suspended glass spheres
 - Optical gel

Prototype Development

- Bearing Material: SS Deep groove Ball BRG or Polymer Plain Bearing
- Gears SS

Currently we have a regular steel chain, for WCTE we could:

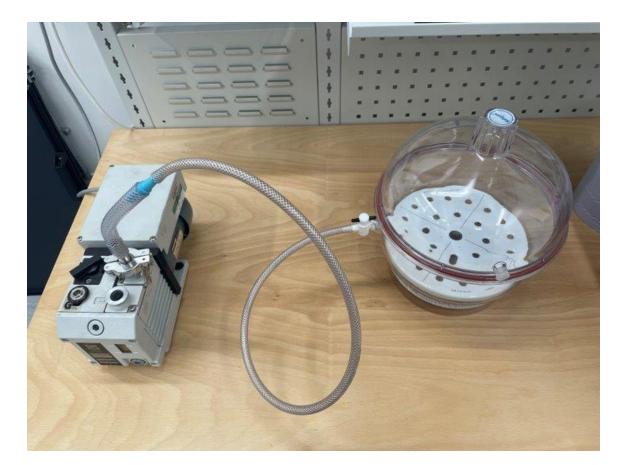

- A custom made 316 chain
- Polymer / SS Chain

mPMTs

- Nineteen 8cm diameter PMTs (Hamamatsu R14374) multi-PMT modules (mPMT)
- Improved granularity and timing compared to larger PMTs
- Integrated LED calibration system within mPMT module

Umbilical R&D

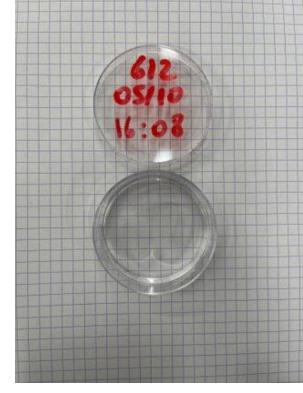
- Trialing Thor Labs <u>FT061PS</u> Furcation tubing for umbilical
 - Coating still needs to be verified by soak test
 - Ø6.1 mm Stainless Steel Tubing inside
 - Dynamic bend R19 mm (empty tube)
 - Dynamic bend of fibre ~R40 mm


Optical Gel Testing

• Testing 2 types of WACKER gel

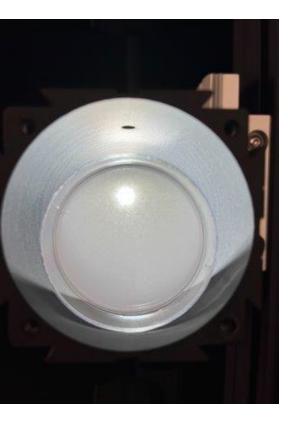
- 612, mix 50:50, softer setting (8h cure @ room temp)
- 604, mix 90:10, harder setting (24h cure @ room temp)
- Degas in vacuum chamber
- Gels are out of date by ~1year but seem ok to use
 - Good transparency and viscosity

Work by Y. Alj Hakim & L. Anthony


Optical Gel Testing

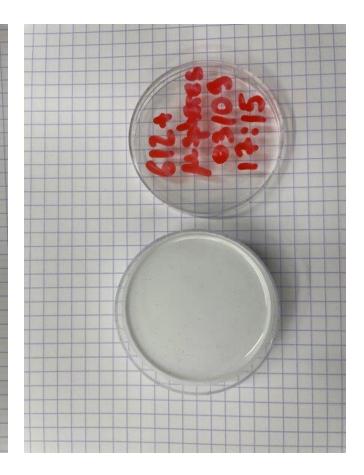
• All small samples degassed in vacuum chamber to remove air bubbles

- Left to cure in air at room temp
- 3M 40micron glass spheres (hollow) rise during degassing



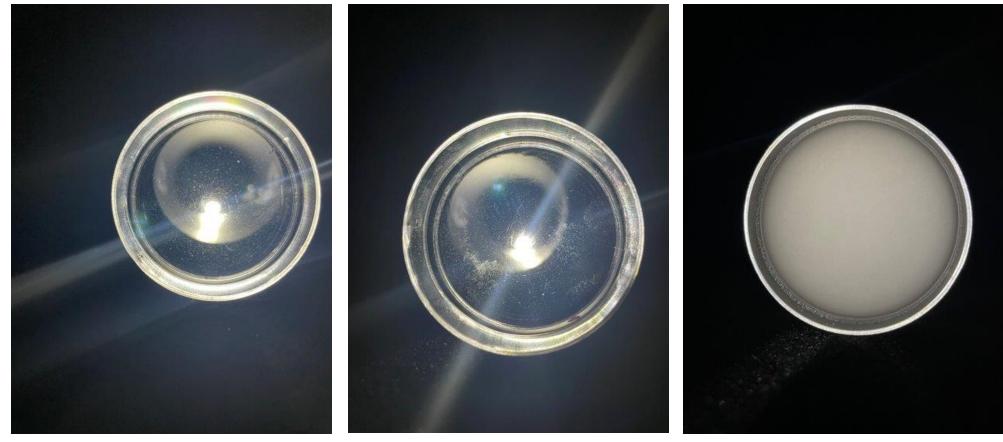
Optical Gel Testing

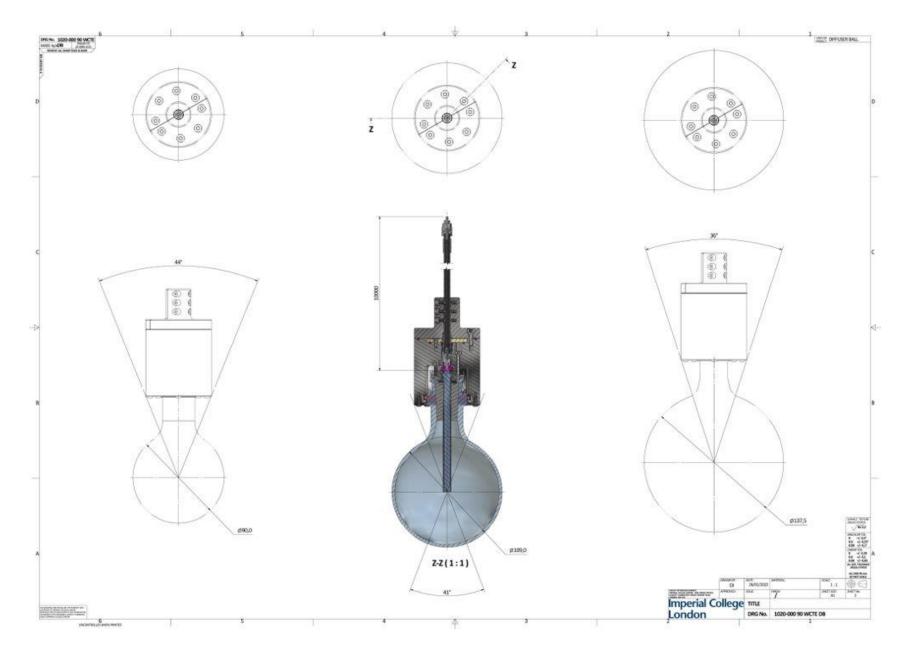
- Testing mixing gels using various methods
 - Mixing glass beads in 1 part of gel and degassing parts 1 and 2 separately
 - Finally degas mixture again


Initial Optical Gel Testing

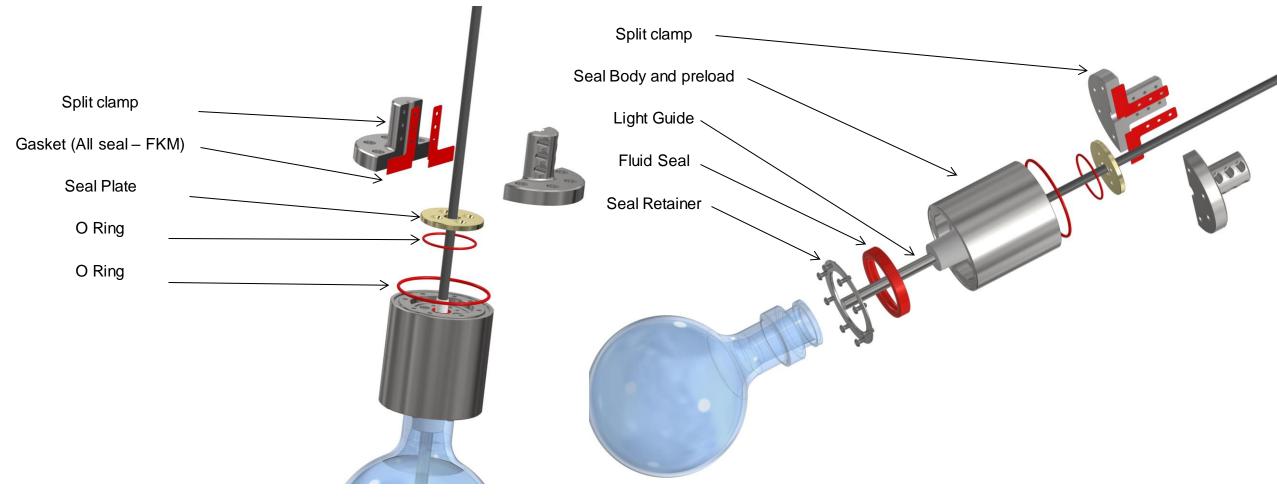
• All small samples degassed in vacuum chamber to remove air bubbles

- Left to cure in air at room temp
- 3M 40micron glass spheres (hollow) rise during degassing




Initial Optical Gel Testing

- **604** no pattern and fully translucent
- **612** gel has some pattern maybe not mixed for long enough?
- 612 with glass spheres (~0.5 tsp) uniformly distributes light and shows no pattern in gel


Diffuser Ball – Diameter Study

- LB diameter and shadow angle
- 90mm / 44°
- 109mm / 41°
- 137.5mm / 36° (Note. is the max dia.)

Diffuser Ball – Preload & Seal

Diffuser Ball Development

Two clamp designs for test facility (left) and WCTE (right)

Re-designed to be modular, no clamp obstructing light close to neck

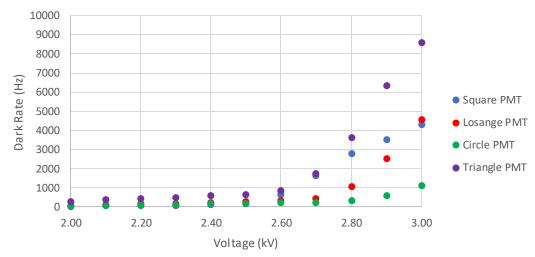
Sept 21

N.B. 109mm diam flask

Characterizing the 4 PMTs which will be used to 10000

PMT characterization – Y.Alj Hakim

- Find beast operating voltage based on dark • rate and gain
- Confirm dark box is light tight •


characterize the laser ball

Imperial College

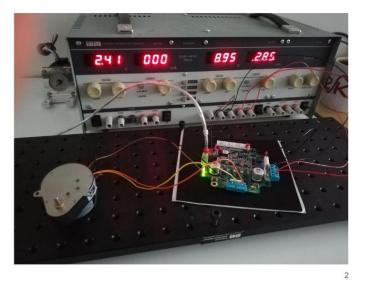
London

•

Laser ball prototype will be completed in coming ٠ weeks after further submersion tests and motor control work by Alie

Dark Rate

Motor Control – A. Craplet


- Aim is to write code to control all 4 motors in CDS system along with program to control rotation of laser ball in lab
- Current status
 - Using TRINAMIC software and 5 axis control boards
 - Performing tests of position/rotation reproducibility
 - Designing some tests to calculate precision and cross-checking with data sheets

Set-up

Mark used to indicate full rotation

• Also working on incorporating timing calibration code into Ka Ming's water analysis code