

Update on radioactive sources development

D. Costas¹, P. Fernández², F. López², F. Monrabal², J. Pelegrín³, J. Renner¹, A. Taboada², J. A. Hernando-Morata¹, J.J. Gómez-Cadenas²

¹ IGFAE/Universidade de Santiago de Compostela ² Donostia International Physics Center (DIPC) ³ Laboratorio Subterráneo de Canfranc (LSC)

WCTE collaboration meeting July 22, 2022

Short summary:

• NiCf source:

- Initial simulations of single-photon detection rate performed
 - Gamma spectrum appears acceptable for 6.75 cm radius source size
- Current plan is to construct the source ourselves (epoxy + NiO + polyethylene mixed in a vacuum chamber and cured) rather than contracting through a company
- We will first attempt a "prototype" source using cheaper material to confirm construction procedure
- Initial studies of 2 different epoxies have been carried out

• AmBe source:

- Final design decisions not yet made
- Initial simulations started

Nickel source - NiCf

- Goal is an isotropic source of gamma rays leading to single photon events for PMT calibration
- Thermal neutron capture on nickel: ⁵⁸Ni(n,γ)⁵⁹Ni (~9 MeV in gamma energy)
- ²⁵²Cf decay provides neutrons
- Source is used for absolute and relative gain calibrations, as well as to study detector uniformity

Brass rod holds ²⁵²**Cf source** at the center of the ball

6.5 kg of NiO and 3.5 kg polyethylene

Nickel source used in SuperK (https://arxiv.org/abs/1307.0162)

Planning for source construction

- 1. Create a silicone spherical mould (135 mm diameter)
 - Construct in two parts around a stainless steel sphere
 - ~1 day/half curing time
- 2. Fill the mould with epoxy + NiO + HDPE mix
 - Mix to be performed in a vacuum chamber
 - Initial test to be done with (less costly) NiO substitute
 - Curing time of potentially several days (to be determined)

Example silicone mould (https://www.youtube.com/watch?v=JqD3jDKLjYY)

Initial sphere (with NiO substitute)

- Create an initial sphere to verify construction process
- Potential NiO substitute: iron oxide (Fe₂O₃)
- Monitor temperature with thermocouples
 - ~3 locations within the sphere
 - May require low exotherm epoxy (curation) over several days) to meet temperature requirements, or curing in several parts
- Air should be removed from components (powders, epoxy) with vacuum chamber before mixture
- Final mixture filled into mould

Vacuum chamber

Epoxy test (A. Taboada, DIPC)

Compare two different adhesives:

- **Temperature monitored with thermocouples and Arduino**
- **Evaluate:**
 - Union between 2 layers combined during "gel" phase of curation and after "solid" phase has been reached
 - Curing temperatures of 2 mixtures (which generates less heat)

Epoxy test (A. Taboada, DIPC)

• Key conclusions:

- Temperatures can rise exponentially once an activation temperature is reached
- solid phase
- in results
- Mixing with a filler (e.g. sand) keeps temperature lower (but cooling also slower)

- Next test:
 - \bullet

• Epoxy is in gel phase when temperatures start to fall; requires several hours to reach

• Interfaces between layers end up being visible (not expected to be an issue), though there is a significant time window to add epoxy in layers without noticeable difference

Clear epoxy mixed with iron oxide (substitute for nickel oxide), 4 layers

- source
- of neutrons) was done by SK PMTs

Tagging: trigger on sum of analog PMT signals within 200 ns, from [1]

Acrylic case containing BGO scintillators surrounding an AmBe neutron

Tagging (~4.4 MeV gamma emitted in coincidence with a large fraction

[1] H. Watanabe et al. Astropart. Phys. 31, 320 (2009)

- WCTE tagging will require either:
 - 1. Send scintillation outside the WCTE (via scintillating fibers) or by operating a photodetector from within the source)?
 - 2. Use the PMTs of the detector?
 - 3. Other options?

1. Surround AmBe source with scintillators coupled to photodetectors

2. Use the PMTs of the detector

- BGO scintillation yield: ~8 photons / keV
- For 4.4 MeV, ~35200 photons
- 40% photocoverage (HK), 20% QE > ~2800 photons detected
- Should be enough for the tag signal

Initial Geant4 simulation

- BGO cylinder (4 cm diameter x 4 cm length) in sphere of water
- Launch 4.4 MeV gamma rays and/or neutrons from center of cylinder
- BGO scintillation distinct from Cherenkov (more photons, uniformly emitted)
- Should be enough to identify events for which gammas from neutron capture hit the BGO: initial simulations (D. Costas) indicate this happens in ~2% of cases

- Continuing simulations studies:
 - Determine minimum amount of BGO needed to tag the majority of gammas
 - Initial simulations (D. Costas) indicate < 50% tagging rate for a 5 cm diameter, 5 cm thick BGO cylinder
 - Determine ideal rate to avoid pileup but still produce events more frequently than the cosmic rate
 - Decide on final source geometry. Currently considering:
 - cylindrical crystal
 - placed in a cylindrical acrylic container
 - AmBe source capsule placed inside hole drilled in crystal

Backup

Simulation

Geant4 simulation:

- Uniform sphere (NiO + polyethylene + glue)
- Launch ²⁵²Cf decays at center of sphere; observe particles escaping source volume
- Using source composition of SuperK
- Calculation of single-photon event rate

Nickel source used in SuperK (https://arxiv.org/abs/1307.0162)

Geant code: https://github.com/nuPRISM/ nicf-source

- **Neutron capture events** \bullet
 - Identified by presence of deuterium
 - Neutron capture radius and time seem reasonable

