T9 Beamline Test Preliminary Results

Luan Koerich, Jiri Kvita, Matej Pavin on behalf of the TB crew (Mark Hartz, Akira Konaka, Antonin Lindner, Sahar Taghayor)

July 21st, 2022

Motivation

- Using the T9 secondary beam for WCTE without a tertiary beamline will significantly reduce the cost and simplify the mechanical design
- Main goals
 - Measure particle rates at very low momenta (200 MeV/c 500 MeV/c)
 - Identify challenges for WCTE

• TOF: scintillator time of flight. ACT: Aerogel-Cherenkov Threshold box.

Experimental Setup

Trigger

- Trigger starts as a coincidence between TOF0 and TOF1.
- An electron veto (ACT 0+1) is used to stop saturation of digitizer buffer.

Pulse information

- Pulse information is acquired both online and offline.
- Amplitude, charge and pulse timing for pulses within a given time window.
- Constant-fraction discriminator (CFD) to determine time.
 - Timing at a percentage of rise time (10% to 90% of amplitude).

Pulse information

Event selection

- Events are matching between the 2 digitizers.
- Require TOF amplitudes not to saturate the digitizers, then $TOF = t_1 t_0$.
 - $\circ~t_{\text{o}}$ is average time of 4 TOF0 PMTs; t_{1} is average time of 4 TOF1 PMTs
- Cut on the sum of amplitudes of the ACT pairs:
 - ACT0+ACT1 < 10 mV;
 - ACT2+ACT3 < 12 mV;
 - ACT4+ACT5 < **20 mV**.

Results – Example TOF distributions

- Theoretical vertical lines for the μ and π TOF shifts after the fitted e peak.
- TOF peak positions: a possible beam bias between Pos and Neg momenta?

Results – observed μ and π yields per day.

- Assuming 40s between spills (conservative assumption, typically the rate is 2x).
- @200MeV Neg: 400 π⁻ / day :: @220MeV Neg: 1000 π⁻ / day.
- @200MeV Pos: 700 π⁺ / day :: @220MeV Pos: 1800 π⁺ / day.

Negatively charged particles

Positively charged particles

Results – observed **proton** yields per day.

• Assuming 40s between spills (conservative assumption, typically the rate is 2x).

Challenges to be addressed

- Electron veto efficiency
 - We need very high efficiency (99.9%) and low material budget → electron TOF distribution overlaps with muon distribution → muon purity is a concern
- TOF resolution
 - We need ~100 ps resolution and low material budget
 - New TOF prototype with SiPMs and fast scintillator is underway.
- Beam protons
 - Even in low momentum configuration, we don't see any protons below 500 Mev/c
- Momentum bias
 - We noticed momentum bias in TOF distributions for positive and negative beam
 - Understanding the beamline will be of crucial importance for WCTE

Conclusions

- Preliminary: able to separate muons for pions for the range of 220-280 MeV/c.
- Toward feasibility of identifying muons and pions for low-energy beam using scintillator-based TOF and aerogel-cherenkov boxes.
- Challenges identified and to be addressed by WCTE.

Selection - backup

14

Selection - backup

