T9 beam line simulation update Arturo Fiorentini

WCTE collaboration meeting - 21 July 2022

T9 secondary beam line simulation

- experts that they kindly shared with us
- so I separated it in two steps: 1) target and 2) T9 beam line

Simulation based on BDSIM framework (GEANT4 extension) used by CERN's beam

• Full simulation from primary protons on target is slow (10⁶ POT in ~48h, need 10¹¹)

0.2mm mylar window x1 0.2mm mylar window x2 Vertical bending magnet to make beam parallel to the floor (compensate production angle) horizontal bending magnet and slit collimator for momentum selection

Primary beam and target

- Primary beam consist of 24 GeV/c protons
- Using "head 3" as proton target as in current actual T9 setup
- Proton beam profile is at the centre of the target with a width of 1.7mm in X and 0.7mm in Y (from T9 documentation)
- Particles at a production angle of -30mrad enter the T9 secondary beam line

Multi-target heads

Head	Material	Length (mm)	Diameter (mm)	Comments	
1	Be	200	10 + Al case	Electron enriched	6
	W	3			-3
2	Al	100	10	Electron enriched	
	W	3			
3	Al	200	10	Hadron	
4	Air	-	-	Empty	-5
5	Al	20	10	Hadron	

Upstream part of T9 beam line

Al target 200 mm long 10 mm diameter

> Beam dump 3.2 m long 90 mm aperture size

XTCX collimator 400 mm long 80 mm aperture diameter

Target simulation

- Generated 10⁸ POT at 24 GeV/c
- Geant4-10.7.3 FTFP_BERT physics list
- Filled histograms with e, μ , π and protons exiting the target
- 200mm long target was divided in 10 z bins •
- P vs θ distributions for each z bin

Input for T9 beam line simulation

- Used histograms from target simulation to generate particles in the acceptance region of the T9 beam line
 - 20 < θ (mrad) < 40
 - $-0.333 < \varphi 2\pi/3$ (rad) < 0.333
 - p<2GeV/c
- According to T9 documentation, angular acceptance is ~4mrad in X and Y which is covered by generated particles
- Still need to increase statistics (goal is > 10¹¹ POT per particle)

	Generated # of particles	POT equivalent
e+	106	5.8x10 ⁸
μ+	106	7.9x10 ¹¹
π+	106	1.5x10 ⁹
protons	106	5.8x10 ⁹

T9 beam line simulation

- No scintillators planes in the beam line are included (only 0.2mm mylar windows x4)
- Counted number of particles at 24 different 10x10cm² area planes (samplers)
- Number of particles are normalized to 10¹¹ POT
- Most particles with wrong momentum are rejected due to momentum slit collimator (s=~27m)

• Generated particles are transported through T9 beam line in 3 momentum configurations: 200, 300, 500 MeV/c

At the end of the T9 beam line (s=~50m)

7

Number of particles / 10 ¹¹ POT (stat. error)				
	200 MeV/c	300 MeV/c	500 MeV/c	
e+	134041 (4%)	191732 (3%)	298896 (2%)	
µ+	13 (10%)	363 (3%)	642 (3%)	
π+	_	1039 (25%)	9162 (8%)	
protons	_	342 (22%)	6837 (5%)	

T09XBPF050, 300MeV/c, |X|<5cm && |Y|<5cm

T09XBPF050, 200MeV/c, |X|<5cm && |Y|<5cm

At the end of the T9 beam line (s=~50m)

 π and μ can be separated by Cherenkov threshold detector

$$\cos \theta_C = \frac{1}{n\beta} \Rightarrow \beta^{-1} < n$$

µ threshold: ~1.19 (200MeV/c), ~1.08 (300MeV/c), ~1.03 (500MeV/c)

T09XBPF050, 200MeV/c, |X|<5cm && |Y|<5cm

Summary & next steps

- Simulation was separated in two steps: 1) target and 2) T9 beam line
- Allows to increase statistics without re-running the target simulation
- Need to increase statistics to have at least 10¹¹ POT as in the actual T9 primary beam spill
- Update T9 beam line geometry with detailed drawings I recently received from CERN's experts
- Main update will be that production angle is +30mrad instead of -30mrad among other minor changes in component dimensions (expect small impact on results)
- Update simulation to actual T9 low momentum mode (currently using T9 high) momentum mode without scintillators and Aluminium windows in gas Cherenkov detectors)

Backup

At the end of the T9 beam line (s=~50m)

Number of particles				
	200 MeV/c	300 MeV/c	500 MeV/c	
e+	783	1120	1746	
μ+	105	821	1484	
π+	_	16	141	
protons	_	20	399	

Momentum mean/std (%)				
	200 MeV/c	300 MeV/c	500 MeV/c	
e+	3.4	5.6	3.2	
µ+	3.0	4.6	18	
π+	_	1.7	2.2	
protons	_	3.2	2.8	