Effects of Phase Transitions on Dark Matter production

Tomer Libman

UNSW

June 24, 2022

Tomer Libman Effects of Phase Transitions on Dark Matter production

- Standard Model doesn't explain Dark Matter or neutrino masses
- Neutrino masses can be explained using the 'seesaw' mechanism:

$$m_{\nu}=-m_D M_M^{-1} m_D^T.$$

- At keV mass, sterile neutrinos could be 'warm' Dark Matter (explaining small-scale structure formation issues with ACDM).
 - e.g. Missing Satellites

• • = • • = •

- $\bullet\,$ Start with Higgs decay into an intermediate dark-sector scalar $\phi\,$
 - These interactions do not thermalise, but self-scattering of ϕ leads to equilibrium temperature $T_{\phi} < T$.
- Then the ϕ can decay into the sterile neutrinos, N.
 - These may or may not thermalise to the temperature T_{ϕ} .

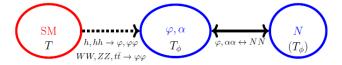


Figure: Sterile Neutrino Production Process

- Perturbative thermal field theory on $\phi \rightarrow$ corrected mass, dependent on T.
 - First order: $m^2 \rightarrow m^2 \frac{\lambda T^2}{12}$.
 - Alternatively, $T_c = m \sqrt{\frac{12}{\lambda}}$.
- Corrected mass affects the cross-section for both the $h \phi$ and ϕN interactions.

- Motivation to produce sterile neutrinos
 - Neutrino mass problem
 - Warm Dark Matter
- Standard Model particle (h) produces the sterile neutrinos (N) through an intermediate dark scalar (φ).
- Can correct the resulting cross-sections using perturbative thermal field theory across phase transitions.