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The Beyond Standard Model Top-Philic Resonance

What is a Top-Philic Resonance and why should we care?

* Various Beyond Standard Model Higgs interpretations attempt to
explain mechanisms by which, its observed mass satisfies
“naturalness” arguments.

These are generally satisfied by the introduction of additional
mechanisms that counteract radiative corrections, and avoid
fine-tuning of parameters.

The ATLAS BSM 4-tops group I am involved with, is currently
exploring a simplified composite Higgs model®, coupling almost

Usip-elniic Cmmpeetis Al exclusively to top quarks (Top-philic), as shown.
Resonance Topology.

9

¢ In this topology, tops originating from the Z’ (signal) are expected
to be more energetic than the remaining spectator tops.

“Jeong Han Kim et al. “Probing TeV scale top-philic resonances with boosted top-tagging
at the high luminosity LHC”. In: Physical Review D 94.3 (2016), p. 035023.
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The Beyond Standard Model Top-Philic Resonance

Why the ¢ttt final state?

¢ Evidence of Standard Model production (UglgI =9.2 tb)? in
Same-Sign/Multi-Lepton channels.
* Recommissioning of the LHC at larger energy scales,
' associated resonance signatures are expected in the top sector,

due to the large Higgs field Yukawa coupling.
! e Significant collaboration of the Machine Learning and ATLAS

coohorts, could boost sensitivity of rare process detection and
unveiling of New Physics.

Top-Philic Composite Higgs
Resonance Topology.

“Morad Aaboud et al. “Search for four-top-quark production in the single-lepton
and opposite-sign dilepton final states in p p collisions at s= 13 TeV with the ATLAS
detector”. In: Physical Review D 99.5 (2019), p. 052009.
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Traditional Neural Networks

What are Multi-Layer-Perceptrons (MLPs) /Neural Networks?

Particle Property Input

¢ Fundamentally, Neural Networks (NNs) are derivations of MLPs
. T TTT T T e MLPs are stacked layers (Big Scary Box) of interconnected fixed

inputs and outputs, where the outputs are predictions.
Big Scary Bo . o Q 0 q .
B ¢ Training MLPs involves quantifying discrepancies, via the
. where you want q .
to kill yourself loss-function (e.g. Mean Square Error), between truth (only in
] e orthe Monte Carlo!) and prediction, followed by updating internal
l l parameters.
m e Ideally, the updating step (backpropagation) improves future
predictions.

Multi-Layer-Perceptron with
Layers Hidden by Scary Box.
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Traditional Neural Networks

A simple Pepe Particle Example:

Particle Property Input * Lets assume we have some particle, which in truth (according to
. T T TT T T Monte Carlo) is angry, and feed its properties into the MLP input
(Energy, Charge, etc.)
Big Scary Box

doing something ¢ Ideally, MLP predicts Particle is angry, meaning our loss is zero,

where you want : 2~
o Kill yourself i.e. Tears of joy!
2 99.95% of the . .
i e However, not always the case if MLP was not trained /complex

enough, and might predict happy, resulting in higher loss, i.e.

m ll Tears of frustration.
Problems with NN /MLPs:

* Requires consistent and fixed inputs.

Multi-Layer-Perceptron with
Layers Hidden by Scary Box.
¢ Inputs are permutation variant!

* No consideration of particle relationships in collision event (Event

Topology).
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Graph Neural Networks

Graph Neural Networks:

* A manifestation of Graph Theory merging with Machine
Learning (specifically Neural Networks)”.

¢ In the context of the ATLAS detector, a collision event
induces observable particles, these are abstracted as
nodes in the event graph.

¢ Nodes connected by edges imply a relationship, as shown
in the pepe graph.
* Pepe particles with common/similar attributes are likely

to be connected and form clusters (e.g. reading/professor
pepe both have glasses and read).

Pepe nodes connected by interest "Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. “Graph neural
networks in particle physics”. In: Machine Learning: Science and Technology 2.2
(2020), p. 021001.
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Graph Neural Networks

Solving aforementioned problems:

¢ Fixed input: Nodes with different attributes are
members of mutually exclusive event graphs.

* Permutation Invariance: Present on a per node basis but,
not for edges (See Message Passing)!

¢ Relationships: Infer via particle edges, i.e. Event Topology.
Message Passing Example:

® Lets look at the reading pepe, each have a document but
differ in certain attributes, e.g. wearing a tie.

e Using an MLP, we can encode mutual (or exclusive)

attributes as Messages, and transmit them via edges.

Pepe nodes connected by interest * Nodes receiving messages can sum these, and assign
weights on each message depending on similarity.
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Relevance of GNNs to ATLAS?

* ATLAS is an extremely interconnected set of detectors, each with their own problems
and uncertainties.

* These properties can be encoded and propagated to event graphs, and make
appropriate adjustments (e.g. decides to reject event based on poor quality).

* Place weighting on important attributes, for example computation of invariant
masses of connected particles (useful for detecting tops).

e More informed decision making when rejecting background processes, e.g. tf, could
improve sensitivity towards New Physics.
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Current and Future Work

e Currently exploring and evaluating a multitude of Graph Neural Network
architectures.

* Assessing importance of specific attributes to extract from measurements and
exploring methods to reduce training time.

* GNNs being applied to HEPP is a rather emerging field and could open up new
avenues to explore/contribute to.
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