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The Beyond Standard Model Top-Philic Resonance

Top-Philic Composite Higgs
Resonance Topology.

What is a Top-Philic Resonance and why should we care?

• Various Beyond Standard Model Higgs interpretations attempt to
explain mechanisms by which, its observed mass satisfies
“naturalness” arguments.

• These are generally satisfied by the introduction of additional
mechanisms that counteract radiative corrections, and avoid
fine-tuning of parameters.

• The ATLAS BSM 4-tops group I am involved with, is currently
exploring a simplified composite Higgs modela, coupling almost
exclusively to top quarks (Top-philic), as shown.

• In this topology, tops originating from the Z’ (signal) are expected
to be more energetic than the remaining spectator tops.

aJeong Han Kim et al. “Probing TeV scale top-philic resonances with boosted top-tagging
at the high luminosity LHC”. In: Physical Review D 94.3 (2016), p. 035023.
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The Beyond Standard Model Top-Philic Resonance

Top-Philic Composite Higgs
Resonance Topology.

Why the t̄tt̄t final state?

• Evidence of Standard Model production (σ t̄tt̄t
SM = 9.2 fb)a in

Same-Sign/Multi-Lepton channels.

• Recommissioning of the LHC at larger energy scales,
associated resonance signatures are expected in the top sector,
due to the large Higgs field Yukawa coupling.

• Significant collaboration of the Machine Learning and ATLAS
coohorts, could boost sensitivity of rare process detection and
unveiling of New Physics.

aMorad Aaboud et al. “Search for four-top-quark production in the single-lepton
and opposite-sign dilepton final states in p p collisions at s= 13 TeV with the ATLAS
detector”. In: Physical Review D 99.5 (2019), p. 052009.
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Traditional Neural Networks

Multi-Layer-Perceptron with
Layers Hidden by Scary Box.

What are Multi-Layer-Perceptrons (MLPs)/Neural Networks?

• Fundamentally, Neural Networks (NNs) are derivations of MLPs

• MLPs are stacked layers (Big Scary Box) of interconnected fixed
inputs and outputs, where the outputs are predictions.

• Training MLPs involves quantifying discrepancies, via the
loss-function (e.g. Mean Square Error), between truth (only in
Monte Carlo!) and prediction, followed by updating internal
parameters.

• Ideally, the updating step (backpropagation) improves future
predictions.
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Traditional Neural Networks

Multi-Layer-Perceptron with
Layers Hidden by Scary Box.

A simple Pepe Particle Example:

• Lets assume we have some particle, which in truth (according to
Monte Carlo) is angry, and feed its properties into the MLP input
(Energy, Charge, etc.)

• Ideally, MLP predicts Particle is angry, meaning our loss is zero,
i.e. Tears of joy!

• However, not always the case if MLP was not trained/complex
enough, and might predict happy, resulting in higher loss, i.e.
Tears of frustration.

Problems with NN/MLPs:

• Requires consistent and fixed inputs.

• Inputs are permutation variant!

• No consideration of particle relationships in collision event (Event
Topology).
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Graph Neural Networks

Pepe nodes connected by interest

Graph Neural Networks:

• A manifestation of Graph Theory merging with Machine
Learning (specifically Neural Networks)a.

• In the context of the ATLAS detector, a collision event
induces observable particles, these are abstracted as
nodes in the event graph.

• Nodes connected by edges imply a relationship, as shown
in the pepe graph.

• Pepe particles with common/similar attributes are likely
to be connected and form clusters (e.g. reading/professor
pepe both have glasses and read).

aJonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. “Graph neural
networks in particle physics”. In: Machine Learning: Science and Technology 2.2
(2020), p. 021001.
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Graph Neural Networks

Pepe nodes connected by interest

Solving aforementioned problems:

• Fixed input: Nodes with different attributes are
members of mutually exclusive event graphs.

• Permutation Invariance: Present on a per node basis but,
not for edges (See Message Passing)!

• Relationships: Infer via particle edges, i.e. Event Topology.

Message Passing Example:

• Lets look at the reading pepe, each have a document but
differ in certain attributes, e.g. wearing a tie.

• Using an MLP, we can encode mutual (or exclusive)
attributes as Messages, and transmit them via edges.

• Nodes receiving messages can sum these, and assign
weights on each message depending on similarity.
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Relevance of GNNs to ATLAS?

• ATLAS is an extremely interconnected set of detectors, each with their own problems
and uncertainties.

• These properties can be encoded and propagated to event graphs, and make
appropriate adjustments (e.g. decides to reject event based on poor quality).

• Place weighting on important attributes, for example computation of invariant
masses of connected particles (useful for detecting tops).

• More informed decision making when rejecting background processes, e.g. t̄t, could
improve sensitivity towards New Physics.
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Current and Future Work

• Currently exploring and evaluating a multitude of Graph Neural Network
architectures.

• Assessing importance of specific attributes to extract from measurements and
exploring methods to reduce training time.

• GNNs being applied to HEPP is a rather emerging field and could open up new
avenues to explore/contribute to.
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