

Offline commissioning of S³-LEB

LISA ITN Academic Day 17/06/2022

Anjali Ajayakumar/LISA ITN ESR 8/GANIL

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

OUTLINE

- S3-LEB set up
- S3-LEB offline commissioning
- Gas cell spectroscopy tests

- Preparation to In-gas jet
- Outlook

S³-LEB

laboratoire commun CEA/DRF

In-gas cell/jet spectroscopy

laboratoire commun CEA/DRF

Fluorescence spectrum of gas jet

CNRS/IN2P3

[2] R.Ferrer et al. Nature Communications.8.14520 .doi: 10.1038/ncomms14520

S³-LEB offline commissioning laboratoire commun CEA/DRF Er for commissioning tests Two step Ti:sa laser scheme Injection and Extraction MCPs PILGRIM 49292.96 cm⁻¹ • A.I **MR-TOF MS** 49262 cm⁻¹ I.P Λ_2 396.6 nm 24083.26 cm⁻¹ λ1 MCPs . 415.2 nm Connecting 0 cm⁻¹ Part G.S Laser system Pulse up (~ 3 kV) $\lambda_{1,2}$ Free jet RFQ Cooler Buncher S-shape RFQ QMF miniRFQ He: 10⁻² - 10⁻³ mbar RFQs Filament Ar: 200-500 mbar [3] J.Romans et al., Atoms, 10, 21 URL: https://doi.org/10.3390/atoms10010021

•

5

CNRS/IN2P3

In-gas cell laser ionization of Er

•

CNRS/IN2P3

laboratoire commun CEA/DRF

Er mass scan with QMF

MCPs 4000 Laser window Er Er⁺ $\lambda_{1,2}$ a 3500 -(U + Vcoswt) 3000 Signal (events for 1.00s) 2500 2000 +(U + Vcoswt) 1500 1000 $Er^{+} + H_2O$ 500 Mass scan done at constant DC/RF ratios 60 % transmission efficiency at high resolution mode 140 160 180 200 220 100% efficiency at transmission mode

۲

ullet

CNRS/IN2P3

laboratoire commun CEA/DRF

mass (amu)

Er ions in the gas cell

- Pressure broadening
- Power broadening
- Doppler broadening

LISA ITN Academic Day-17/06/2022

Buncher transmission

- lons cooled by He gas ullet
- Potential well for bunching ullet
- Re-acceleration with PUP drift tube
- Systematic study of buncher parameters He gas pressure **Energy spread Spatial spread** Bunch duration Transmission **RF** amplitude
- Spatial spread, Xdisp= 1.5(1) mm • Ydisp = 1.5(3)mm
- Energy spread, FWHM < 12.7(1)V ۲

0

After optimization, Eff_{Bun}~ 30 % •

Mass spectrum at PILGRIM

- Transmission to PILGRIM optimization in process
- Mass spectrum recorded at PILGRIM shoot through: Eff ~ 20% from buncher

0

• RMS width,FWHM (¹⁷⁰Er) < 122(4) ns

laboratoire commun CEA/DRF

CNRS/IN2P3

Trapping of Er ions

- Trap at 1000 turns several isotopic masses of Er
- Extraction of contaminants before the ions of interest

•

Preparation for In- gas jet spectroscopy

- De-Laval nozzle M=7
- Gas jet path

-Second step Ti:sa :collinear -First step Ti:sa : Transversal

• Ionization in gas-jet

Outlook

Summary:

- Relative transmission of laser ions till PILGRIM tested
- Characterisation of laser ions in the gas cell
- De-Laval nozzle installed
- Trapping of ions in PILGRIM

Future Steps:

 Preparation for In- gas jet high resolution spectroscopy

L. Caceres, P. Delahaye, R. Leroy, S. Geldhof, N. Lecesne, A.Ortiz-Cortes, H. Savajols GANIL, CEA/DRF-CNRS/IN2P3, B.P. 55027, 14076 Caen France Y. Balasmeh, X. Fléchard, J. François Cam, J.Lory, C. Vandamme LPC Caen, Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, 14000 Caen, France R. Ferrer, R. de Groote, J. Romans, P. Van Duppen KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium W. Dong, S. Franchoo, V. Manea IJCLab, Université Paris-Sud 11, CNRS/IN2P3 91406 Orsay, France K. Wendt Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany I. Moore Department of Physics, University of Jyväskylä, PO Box 35 (YFL), Jyväskylä FI-40014, Finland

S3 LEB: This project has received funding from the French Research Ministry through the ANR-13-B505-0013, the Research Foundation - Flanders (FWO) under the International Research Infrastructure program (nr. 1002219N), the Research Coordination Office – KU Leuven, the European Research Council (ERC-2011-AdG-291561-HELIOS) and the European Union's Horizon 2020 research and innovation program under grant agreement No 654002 and No 861198–LISA–H2020-MSCA-ITN-2019

Thank you

Er Resonance Ionisation spectroscopy

• Training with broad band Z-cavities

New entrance window test bench

- New test bench design in Inventor
- Allows measurement of absolute pressure
- Implementation of design and leak test performed
 - Leak rate > 10⁻¹¹ mbar l/s
- Thin foils ordered for start of tests

3D design of the new test bench adapter

Entrance window tests for the gas cell

- Test bench prepared for entrance window
- Initial tests with Aluminium 20 μ m: leak test with He leak detector > 10⁻⁹mbar l/s
- Integral leak rate also calculated for the setup $>10^{-7}$ mbar l/s
- Ti film: 1st test: leak $> 10^{-5}$ mbar l/s

Range (mm)	P (mbar)	sigma (mm)	Range (mm)	P (mbar)	Sigma (mm)	Range (mm)	P (mbar)	Sigma (mm)
7,5	1013,25	0,49	5,33	1013,25	0,48	3,1	1013,25	0,50
15	500	1,00	10,7	500	0,98	6,3	500	1,02
21,6	350	1,43	15,4	350	1,40	9	350	1,45
-	200	-	26,9	200	2,47	15,8	200	2,55

Stopping range for a 152Er with Ar as buffer in the gas

•

Diode pumped CW Ti:sa as seed source

•

[2]Volker Sonnenschein et al.Hyperfine Interactions.241:32.(2020). https://doi.org/10.1007/s10751-020-1706-4

- Compact setup
- Replaces expensive commercial pump sources
- Dichroic combination of diode lasers used
- Wavelength selection by Birefringent filter and etalons
- Stabilized cavity

--- 97% OC B1

97% OC B1+G1

94% OC B1+G1

[3]Volker Snnenschein et al.Nuclear Inst. And Methiods in Physics ResearchB.463(2020) .doi.org/10.1016/j.nimb.2019.03.017

Narrowband laser system

• Participation in the offline commissioning of NB laser system

- Wavelength tuning range 10 nm 50 nm
- Offset voltage +/- 10V for grating control

CW laser system as seed source

- Green/blue diode lasers as pump
- Power required: few mW
- Output wavelength range: 150 nm

Requirements

- Narrow linewidth < 10 MHz
- Stability: Electronics
- Wavelength scanning by FPI
- Wavelength selection: BRF and etalon
- One direction operator: Faraday rotator

CW laser system as seed source

- Final design obtained from V.Sonnenschein
- Design verified in detail (Inventor Professional software)
- Update of design with machining team
- Launch of machining in progress
- Components listed and ordered, most of them delivered
- Test of components in progress
- Design of a home built FPI for wide range scanning of wavelength

Updates

- Option to use with an Nd:YAG pump laser
- Cooling system for the Ti:sa crystal, diodes and diode controller

Diode Pumped CW Ti:sa cavity as the seed source

LPC

•

LISA ITN Academic Day-17/06/2022

Gas cell efficiency optimisation

Optimization of the gas cell geometry
Study gas flow inside gas cell to optimize the parameters for increased efficiency
Simulation: Optimize geometry of the entrance window(COMSOL)

•Entrance window tests

