LISA Academic Day

CERN / June 2022

Asar AH Jaradat ESR 2

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

Agenda

- Objectives
- Brief Literature Review
- Experimental Setup
- Future Plans

Implementation of the PI-LIST device at ISOLDE

- Design and setup of infrastructure
 - Characterization of its performance
 - High-resolution laser spectroscopy studies using the PI-LIST

Development of optimal ionization schemes of actinides for ISOLDE

0

- Using laser spectroscopy of actinide elements
 - Collaborations with other ESRs

Literature Review

•

4

Literature Review

Setup- ISOLDE

Setups in ISOLDE

COLLAPS²

CRIS³

- 1) RILIS team documentation
- 2) High-resolution laser spectroscopy of Al 27 32 Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Schematicdepiction-of-the-COLLAPS-collinear-laser-spectroscopy-setup-at-ISOLDE-CERN_fig1_348767233 [accessed 15 Jun, 2022]
- 3) CRIS website

In-Source RIS so far at ISOLDE

How does ISOLDE fit in to LISA

89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide	Actinide

Higher

source

resolution in-

spectroscopy:

Thick target ISOL methodImage: Solution of TheoremSpallation of TheoremContent of theoremSpallation of TheoremContent of theorem

Production /

Extraction of

Actinides

Mia Au –

ESR 3

Laser ionization and spectroscopy of Actiniides Asar – ESR 2

New ionization schemes (with M. Kaja, Mainz)

New high resolution in-source method (PI-LIST)

New laser technologies (with Mitzi@Hubner and Julius @ M²)

Setup: The Laser Ion Source and Trap LIST

- 1) Supression of surface ionized species
- 2) Field-free laser ionization region
- 3) Confinement during the drift along the field-free region
- 4) High-resolution spectroscopy

Perpendicular Illuminated Laser Ion Source Trap

11

	Broadband (10 GHz)	Narrowband (1 GHz)	Fourier limited (< 100 MHz)
lon guide	Maximum efficiency, low resolution, no isobar suppression (for general ion beam production when surface ionized isobars are not a concern)	High efficiency, intermediate resolution: for Isomer separation or laser spectroscopy of isotopes with large IS or HFS, and when isobar suppression isnt needed	Not applicable: high resolution laser would not improve experimentally observed linewidth
LIST (collinear)	20-50 x efficiency loss compared to ion guide, low resolution, good isobar suppression (for general ion beam production when surface ionized isobars are a major concern)	120-50 x efficiency loss compared to ion guide, intermediate resolution, good isobar suppression: for Isomer eseparation or laser spectroscopy of isotopes with large IS or HFS, and when isobar suppression isnt needed	Not applicable: high resolution laser would not improve experimentally observed linewidth
PI-LIST	Not applicable.	Improved resolution, but with slight efficiency loss. Experimental resolution will be limited only by the laser linewidth: for use when Doppler broadening is dominant in collinear mode (lighter isotopes or when a slight resolution improvement is needed).	High resolution, but with slight efficiency loss. Experimental resolution will be limited only by the atom beam divergence (~100-300 MHz): for use when resolution is of prime importance (small IS or HFS).

۰

Results

Narrow-band laser system: CRIS Matisse cw-Tisa + RILIS seeded ring cavity

Ac 227

Ac 227

- Successful initial implementation of the PI-LIST in ISOLDE.
- PI-LIST proof of concept and first high-resolution in-source spectroscopy of Ac.
- Efficiency of perpendicular geometry setup was comparable to collinear setup.

Thank you For Listening ③

