Work Package 4: Enhanced Understanding of the Actinide Atomic Structure

LISA Science Day June 17th, 2022

Klaus Wendt, JGU Mainz for EU ITN LISA

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

Description of Acxtivities

Task 1 - JGU: RIS on atoms

Identification of **RIS schemes** for actinides, redetermination of **ionization potentials**, investigation of **HFS** and **IS**

Task 2 - UGOT: Studies on Negative Ions

Installation of the GANDALPH detector at CRIS/CERN-ISOLDE. Collinear laser photodetachment spectroscopy on negative actinide ions

Task 3 - FSU: Theory

Development of **dedicated atomic structure codes** and calculations for actinide elements

Task 4 – RUG : Theory

ESR 14 Raphael

Relativistic coupled cluster (CC) & configuration interaction (CI) atomic calculations of properties of heavy & superheavy

ESR 6 Miranda

ESR 13 Joseph since 12/21

ESR 5 Magda

The Actinide Atomic Structure Experimental Status 2022

JGU (Johannes Gutenberg-Universität), Mainz, Germany

WP 4: Enhanced Understanding of the Actinide Atomic Structure

LISA Science Days, 17.06.2022

Klaus Wendt, University of Mainz

IP values & open subshells of the Elements

Complex Atoms: Ground States & Level Schemes of Lanthanides

Lanthanide atoms (rather) regularly fill the 4fⁿ shell sequentially

EU ITN in Horizon 2020

IISA

- 5d electron mixed in (3 out of 15
at empty and half filled shell)

Ground state configurations obey the **3 Hund's rules** for the lowest energy level:

- 1. Max. multiplicity 2S+1
- 2. Largest orbital L
- 3. Lowest total J = L+S

More Complex Atoms : Ground States & Levels of Actinides

EU ITN in Horizon 202

Off-line and on-line accessible Isotopes in the Actinides

Production of Actinides at ORNL High Flux Reactor: S.M. Robinson et al., Radiochim. Acta 2020; 108(9): 737–746

LISA Science Days, 17.06.2022

EU ITN in Horizon 2020

IISA

Klaus Wendt, University of Mainz 9

EU ITN in Horizon 2020 OHANNES GUTENBERG **The RISIKO** – RILIS development tool & off-line **RIB** facility

UNIVERSITÄT MAINZ LAR SSA

Isser family: pulsed, powerful & narrow-bandwidth for RIMS

Custom-built Ti:sa laser cavities for pulsed high repetition rate operation R. Horn, PhD. JGU 2003

- Three different designs tailored for
 - High power (standard laser)
 - Fast continuous wide-range scanning (via grating)
 - Narrowband operation (injection-locked laser)
- Resonator internal SHG for blue and single pass THG or FHG for UV

Characterization of a pulsed injection-locked Ti:sapphire laser and its application to HR RIMS of copper V. Sonnenschein, I.D. Moore, S. Raeder, M. Reponen, H. Tomita, K. W. *Laser Physics 27, 085701 (2017)*

 \rightarrow efficiency

 \rightarrow quasi-simultaneous

multi element analysis

More than 80 units

of JGU Mainz Ti:sa

lasers worldwide

RISIKO TOF-MS TRIGAL IPS-UNZ ROSIUM ROSIUM

HRIBF 03ML

RILIS

Harinover IRS

- \rightarrow high resolution
- IG or FHG for UV (b)

Nagoya RIKEN

LISA Science Days, 17.06.2022

EU ITN in Horizon 202

Multielement RIMS on Actinides

- Simple & efficient two-step RIS
- Rapid access to each individual element taken from isoelectronic REEs

→ Fast full sample characterization

- → Isobar-free, low-background isotope ratio determination
- → Laser spectroscopy in mixed sample
- → Ultratrace analysis & fundamentals studies

Exclusive sample obtained from ORNL (J. Etzold)

Regular trend of 5fⁿ 6d 7s² \rightarrow 5fⁿ 6d 7s ionization above - - - unpronounced behaviour below half-filled 5f shell

Auto-ionizing states & Rydberg analysis

- Characterization of first excitation states (FES)
- Identification of 3 different ionization schemes \succ
- IP determination by Rydberg analysis
- Verification by field ionization \geq
- High resolution spectroscopy on HFS & IS

PhD Thesis of Nina Kneip & to be published

Cm 243	Cm 244	Cm 245	Cm 246	Cm 247	Cm 248	Cm 249
29.1 a	18.10 a	8500 a	4730 a	1.56 [.] 10 ⁷ a	3.40 [.] 10⁵ a	64.15 m
α 5.785; 5.742 ∈; sf; g; γ; e⁻	α 5.805; 5.762; sf; γ (43); e ⁻	α 5.361; 5.304; sf; g; γ	α 5.386; 5.343 sf; g; γ; e ⁻	α 4.870; 5.267; γ; g	α 5.078; 5.035 sf (8.3%); γ; e ⁻ ; g	β ⁻ γ 643 e ⁻

Wavenumber (cm⁻¹)

Investigation of the Rydberg spectrum A, B and C

- Spectral scan range 400 cm⁻¹
- High state density below the ionization potential showing systematic structures

Precision of IP Determination: Rydberg Convergences in Na

ARISSA

Redetermination by Field Ionization

0.7 nuits) 0.0 nuits

e 0.5

- Assignment of states not required
- Perfectly suited for IP extraction of complex atoms (actinides) \geq

$$W_s = E_{\rm IP} - 2\sqrt{\frac{Z_{\rm eff}e^3F}{4\pi\epsilon_0}}$$

 W_s : saddle point $Z_{\rm eff}$: effective charge V_C : Coulomb potential V_F :electric potential

Profiles and isotope shifts of the 23083 cm⁻¹ and 24747 cm⁻¹ FES

Laser spectroscopy along the series of actinides and beyond

ightarrow lot of work has been done and still

 \rightarrow it's a big challenges for state-of-the-art atomic (and nuclear physics)

Atomic spectroscopic data of high relevance,

 \rightarrow i.e. the nuclear clock, nuclear medicine or ultra trace analysis

Access ensured for specific isotopes & isotopic sequences from Ac to Fm

ightarrow on-line more isotopes and even further

Theory support mandatory for analysis of atomic (and nuclear) structures

 \rightarrow fruitful exchange just at the start....

Thanks to the funding agencies: BMBF 05P18UMCIA, EU ITN LISA, to all members of the teams and to you for your attention...

