

Laser spectroscopy of Neptunium

- excitation schemes, atomic structure and the ionization potential -

M. Kaja¹, D. Studer¹, F. Weber¹, F. Berg¹, N. Kneip¹, T. Reich¹, K. Wendt¹ ¹Johannes Gutenberg University, 55128 Mainz, Germany

LISA Academic Day/ 17 June 2022

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

- Radioactive actinide
- Long half-life ²³⁷Np 2.14 · 10⁶ y
- High radiotoxicity

Neptunium

Neptunium production

- Ionization potential 50535(2) cm^{-1 [1]}
- 462 atomic levels ^[2]

 \bullet

The development of efficient and selective laser ionization schemes plays an important role for Np spectroscopy and ultratrace analysis.

Kohler, S ; Deissenberger, R ; et al. Spectrochim. Acta B,52, 717 – 726, (1997)
Kazakov, V. V.; Kazakov, V. G.; et al. Phys. Scr., 92, 10, (2017)

 $\lambda_c \pm 10 \,\mathrm{nm}^*$

10 to 20 GHz*

20 MHz

	Output range	700 to 1020 nm	
	Tuning range	100 GHz	700 to 1020 nm
	Spectral bandwidth	$1 \mbox{ to } 10 \mbox{ GHz}$	1 to 3 GHz
	Beam quality (M^2)		< 1.3

LISA

Mainz Atomic Beam Unit - MABU

RISIKO mass separator

LISA Academic Day

IS^

6

LISA Academic Day

FES = 25 075.15 cm⁻¹ (J=13/2) FES = 25 277.63 cm⁻¹ (J=9/2) FES = 25 342.55 cm⁻¹ (J=11/2)

•

9

•

10

•

Two-step excitations with just the second laser 2 + 2

•

- 11

Ionization scheme development – intensities comparison

12

In source spectroscopy of neptunium

FES = 25 075.15 cm⁻¹ (J=13/2) FES = 25 277.63 cm⁻¹ (J=9/2) FES = 25 342.55 cm⁻¹ (J=11/2)

Outlook

- Perform electric field ionization
- Narrow-band spectroscopy at RISIKO in the PI-LIST ion source (²³⁹Np)
- Spectroscopy of berkelium and protactinium

 \bullet

