

Calculations of the electron affinity of polonium at the CCSD(T) level

LISA Academic Day – 16/06/2022

Raphaël Crosa-Rossa, ESR 14, Van Swinderen Institute Supervisors: A. Borschevsky, R. Timmermans, J. Berengut

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

Research projects

- Calculation of the **electron affinity of polonium** with the single reference **CCSD(T)** approach
 - Influence of the basis set parameters: cardinality, augmentation, correlating functions
 - Influence of the **method** used : DHF, CCSD(T), CCSDT(Q)...
 - Influence of the size of the correlating space
 - Estimation of the **uncertainty**
 - QED effects
 - Submit for publication collaboration with Miranda Nichols (ESR 06)
- Field shift calculation for a transition in gold with single reference CCSD(T) approach
 - Similar investigations
- Calculation of the mass shift for a transition in gold with CI+MBPT approach
- Determination of the **atomic factors** for several transitions in **fluorine** with **CI+MBPT** approach
- Calculation of hyperfine structure and isotope shifts in plutonium

DIRAC program and Tel Aviv Package

AMBiT program

Work in progress

Training - Teaching activities

Workshops & courses at the University of Groningen

...

- Literature review
- English conversation for academics
- Project management
- Scientific writing
- Efficient communication in Academia
- Scientific integrity
- **Computer** infrastructure management
- Dutch A0-A1

- Teaching assistant for 3rd year bachelor students: Material Design Theoretical Methods
 - Tutorials
 - Computer labs
 - Grading

Scientific motivation

The last electron affinity to measure in the 6 first rows of the p block

Framework: the LISA project

- Laser Ionization and Spectroscopy of Actinides
- **15** PhD students
- 3 years
- Research scope:
 - Fundamental understanding of the **atomic structure**
 - Societal applications: targeted cancer therapy and radioecology
- CERN LISA ITN Network This map was created by a user. Learn how to create your own. Canade North Pacific Ocean Wesco Wesco Wesco Wesco Comma Comm

https://lisa-itn.web.cern.ch/

ESR 05

Magdalena Kai

ESR 11

Lauren Reed

Rossa

Jake Johnson Bianca Reich

a Reich Mia Au

Andrea Raggio

Miranda Nichols

Vaila Leask

0

Anjali Ajayakumar Julius Wessolek

Jessica Warbinek

Darcy van Eerten

h Helena Escudero

Mitzi Urquiz

Electron affinity (EA) of Polonium

• **Definitions**:

 $Po(g) + e^- \rightarrow Po^-(g)$ $EA = E(Po,g) - E(Po^-)$

 IP and EA gives access to fundamental physicochemical properties:

Property	Definition
Electron affinity	EA
lonization energy	IE
Electronegativity	$\chi_{\rm M} = \frac{\rm IE + EA}{2}$
Hardness	$\eta = \frac{\mathrm{IE} - \mathrm{EA}}{2}$
Softness	$S = \frac{1}{2\eta}$
Electrophilicity	$\omega = \frac{\chi^2_{\rm M}}{2\eta}$

Figures Adapted from Leimbach, D., Karls, J., Guo, Y. *et al.* The electron affinity of astatine. *Nat Commun* **11**, 3824 (2020). https://doi.org/10.1038/s41467-020-17599-2

Previous work and collaboration

- The electron affinity of Po will be measured in the near future at ISOLDE (Miranda Nichols, ESR 06, based in Gothenburg (Sweden)
- The EA will be measured by laser photodetachment

 Previously, the electron affinity have been calculated by Borschevsky *et al*, and other research teams, but a higher accuracy is expected with the present

calculations

TABLE III. Calculated electron affinities (eV), compared to experiment and to earlier calculations.

Bi	Po	At	Method	Ref.
0.883	1.362	2.314	4c + CCSD	Present
0.953	1.461	2.404	4c + CCSD(T)	Present
0.957	1.464	2.407	4c + CCSD(T) + Breit	Present
0.961	1.469	2.412	4c + CCSD(T) + Breit + QED	Present
	1.9(3)	2.8(2)	SE ^a	[28]
	1.911	3.115	RECP + CCSD(T)	[20]
1.034			4c-FSCC + Breit	[17]
0.720	1.930	3.183	RECP-ccCA	[13]
0.731	1.225	2.110	4c-MBPT	[14]
0.75	1.25	2.22	$DK + CASPT2 + SO^{b}$	[15]
		2.38	MCDF + empirical ^c	[7]
	1.405	2.416	MCDF	[8]
1.09			4c-DFT	[9]
		2.30	$DK6^{d} + DFT$	[10]
0.942			Expt.	[5]

Borschevsky, A., Pasteka, L. F., Pershina, V., Eliav, E., & Kaldor, U. (2015). Ionization potentials and electron affinities of the superheavy elements 115-117 and their sixth-row homologues Bi, Po, and At. Physical Review A, 91(2)

Leimbach, D., Karls, J., Guo, Y. *et al.* The electron affinity of astatine. *Nat Commun* **11**, 3824 (2020). https://doi.org/10.1038/s41467-020-17599-2

Method

The relativistic single reference coupled cluster approach

Relativistic coupled cluster approach

- Born-Oppenheimer approximation
- Dirac-Schrödinger equation
- Hartree-Fock method

$$\Psi(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_i(\mathbf{x}_1) & \psi_j(\mathbf{x}_1) & \dots & \psi_k(\mathbf{x}_1) \\ \psi_i(\mathbf{x}_2) & \psi_j(\mathbf{x}_2) & \dots & \psi_k(\mathbf{x}_2) \\ \dots & \dots & \dots & \dots \\ \psi_i(\mathbf{x}_N) & \psi_j(\mathbf{x}_N) & \dots & \psi_k(\mathbf{x}_N) \end{vmatrix}$$

• Electron correlation: include (single, double,...) excitations

0

• Treatment with an **exponential ansatz**

$$|\Psi_{\rm CC}\rangle = e^{\hat{\mathcal{T}}}|\Phi_0\rangle \qquad \qquad \hat{\mathcal{T}} = \hat{\mathcal{T}}_1 + \hat{\mathcal{T}}_2 + \dots + \hat{\mathcal{T}}_N$$

Method, Hamiltonian and Basis Sets

$$H_{\text{DCB}} = \sum_{i} h_{D}(i) + \sum_{i < j} (1 / r_{ij} + B_{ij}),$$
$$h_{D}(i) = c\alpha_{i} \cdot p_{i} + c^{2}\beta_{i} + V_{nuc}(i)$$

•

- 10

What can we play with?

- Method: DHF, CCSD, CCSD(T), CCSDT(Q),...
- Basis set
 - Cardinality: Double, Triple, Quadruple Zeta
 - Number of correlating functions: valence (v), core-valence (cv) or all electrons (ae)
 - Single, double,... diffuse functions
- Number of correlated electrons and virtual cut-off
- 2 components and non-relativistic Hamiltonians

Basis sets: definition

Atomic orbitals described as a linear combination of basis functions

$$\psi_k = \sum_s c_{ks} \phi_s$$

• **Expression** of the functions:

$$\phi_{nlm}(r,\theta,\phi) = R_n(r)Y_{lm}(\theta,\phi)$$
• Radial part described with **Slater** (STO) or **Gaussian** (GTO) functions

$$\chi(r) \propto e^{-\alpha r^2}$$

$$\chi(r) \propto e^{-\alpha r}$$

$$\chi(r) \propto e^{-\alpha r}$$

$$\chi(r) \propto e^{-\alpha r}$$

Gaussian functions

13

Parameters

• Cardinality: number of functions describing each atomic orbital:

- Double zeta
 2 functions
- Triple zeta 3 functions
- Quadruple zeta
 4 functions

...

- Number of correlation optimized functions: valence (v), corevalence (cv), all electrons (ae)
- Additional **diffuse** functions:

...

s-aug

1 layer of diffuse functions

0

d-aug

2 layers of diffuse functions

Preliminary results

Tellurium and Polonium

	രരരര	@@	രരരര	00	00	രരരര		*
*	<u>aa</u> aa		aa aa	60	aa	aa		*
8	60 60	60	66666	@@@	aaa	<u>aa</u>		*
	@@ @@	@@	@@ @@	@@	@@	@@		*
	രരരര	aa	രര രര	aa	@@	രരരര		*
						00000		*
								*
{}ZS)S?\$=\$)]S?\$%%>S	S\$%S\$ZZ6c	ннмнн	нннннн	HM&MH	IbHH6\$L	1: <s <="" td=""><td>:/:/:::/::</td><td>!:.:::%</td></s>	:/:/:::/::	!:.:::%
\$?S\$\$%\$\$\$\$?%?\$(SSS\$	SSSHMMMM	MMMMM	MMMMMM	6H&65	&SH&&I	(?6\$r~:::	/////:::::	:.::-::\$
(%?)Z??\$\$\$(S%\$>\$)S6	HMMMMMMMM	MMMMM	MMMMMMM	MR6M]	&&\$6HF	R\$&6(i:::	::: i ::::	:::-:-::(
\$\$?\$\$)\$?\$%?))?S/]#M	MAMMAMM	MMMMM	MMMMMM	MMMHM	11HRH9F	8\$\$\$():?	:/:// :/::	/:/.::.:\$
S\$\$%?\$%((S)?Z[6MMM	MMMMMMMM	MMMMM	MMMMMMM	MMMM	MMM&HF	\$\$&/)S?<	~::!!!:::::	::/:-: .S
55%%%\$\$\$%%\$\$MMMMM	MMMMMMMM	MMMMM	MMMMMMM	MMMM	ммнннн	HHM>?/S/	:/:::`:/:/	/:/::-::S
\$\$\$\$\$?%\$\$\$)MMMMMM	MAMMAMM	MMMMM	MMMMMMM	MMMM	MMMMM	MMM/4?:S	:/:::/:::/	:/::::?
5\$(S?S\$%(?\$HMMMMMM	MAMMAMM	M#&7RH	199MMMMM	MMMM	MMMMM	MMHHHd\$/	:::::/::::	::-//.:.S
(?SS(%)S&HMMMMMMMMM	MMMMMM#	s ///	??\$9HHM	MMMM	MMMDSZ	&1S/?	?~:///:: /	1:/-:-:.(
S?%? <h(mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm< td=""><td>MMMMMR?".</td><td></td><td>::<>:``?</td><td>/*?##</td><td>*)\$:/:</td><td></td><td>((%://::/:</td><td>::::/::/\$</td></h(mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm<>	MMMMMR?".		::<>:``?	/*?##	*)\$:/:		((%://::/:	::::/::/\$
S\$(\$\$)HdMMMMMMMMMM	MMMMP: .						`Z<:>?::/	::::: :iS
:%%%&HMMMMMMMMMMMMMMM	MMM6:						`\$%)>%%<	/>!::::c
5?%/mmmmmmmmmmmmm	MMMH-						/ZSS>?	:?~:;/::S
\$SZ?MMMMMMMMMMMMMMM	MMH?.						\"&((/	?//? :::\$
\$%\$%&MMMMMMMMMMMMMM	MMM:.						?%/S	: ::/::\$</td
(\$?}&HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	MMM> :						\$%%<	?/i: i::(
z\$(\$&mmmmmmmmmmmmm	MMHk(:.						.s/\	?\?/!:/:Z
(;;;* <hwmmmmmmmmmmmmmm< td=""><td>MMFk:</td><td></td><td></td><td></td><td></td><td></td><td>:%/%</td><td>/(:/:ii (</td></hwmmmmmmmmmmmmmm<>	MMFk:						:%/%	/(:/:ii (
5Z(S?]MMMMMMMMMMMMMM	MHS?:						/s	: ::? S</td
\$%)\$\$(MMMMMMMMMMMMM	MR):`:. :		,/bcokb	/_			:\$?%	? ~:/:/:\$
\$\$\$%\$)[[?\$?MMMMMMMM	M: :.:	::::\$7	7?<&7&MM	WWWW	1#/		: ?</td <td>:(:/::::%</td>	:(:/::::%
\$\$\$?Z?HHH~ /MMMMMMM	MM/`:.	:/:%%	6%?dHMMM	WWWW	MMH?,	,bMM	MM6//./i~/·	~:<:::/:\$
\$(\$S\$M//::S?ZHMMMM	H/:.`:::.	:/%S/8	SUMHUMMAN	MMMMR	M&><	, HMMMM	MME :::?:	///: :::\$
)[\$S\$S(\$ _i:#>::*H&	?/::.::/:	/"://:	:?>>`:&H	MHSMM	MM\$:`·	- MMHMM	MMHHT .)i/	?////::/)
\$\$[\$\$>\$}:dHH&\$\$?S		-/-:``	./::>%Z	i?)&/	? : . `	`H?\$T*	·\" /%?>	%:)://ii\$
\$&=&/ZS}\$RF<:?/ %	r/:::/:/:		:::S//	1./		>??	: `SS <s< td=""><td>:)!/////\$</td></s<>	:)!/////\$
2&]>b[Z(Z?&%:::/S	\$\$:>:::i						,>%%%:	>/>/! :/Z
\$\$&/F&1\$c\$?>:>?/,>?	\$\$ZS/::/:						S?S)S	?<~:::::\$
\$\$&\$&\$k\$>> ?<: ((/</td <td>\$[/?)i~/:</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>S?:%%%</td> <td>?/:::/::8</td>	\$[/?)i~/:	1					S?:%%%	?/:::/::8
=[/2[[Fp[MMH\$>?Z&S\$	\$\$/\$S///						/((S\$:	%<:///:/=
s&>1MHHMMMM6M9MMMM\$.	2\$}\$S%/::				/,,,do	D>/:.	((SSSS	%:)!//1 \$
MMMMMMMMMR&&RRRHR	\$&(\$(?: i			. :	%&S&\$	&H&	/>%;/?	>???:<::>
mmmmmmmmms/}s\$&&I	H&[\$SS//:	····		V <td>1&&D]8</td> <td>M&<,</td> <td>:/::/?%%</td> <td>)S>?://:M</td>	1&&D]8	M&<,	:/::/?%%)S>?://:M
mmmmmmmm?}\$/\$\$ki	M&&\$(%/?	11:	1 :1//	1d/ :	11?*/*	71"	.:/(SS\$	%(S%)):%M
**************************************	MHR#\$S%%		1 :;&	&b/D/	\$p=qp	//b/~	:/~~%%??\$	=\$)2\$S+;M
TETERPERMENTE 5\$\$Z1	IMMMD[\$?	\$:>)/:	1 1/2:		DD&{b	<-	·,:/)[SS(}	2/\$\$?/ <sm< td=""></sm<>
TTTTTTTTTTTT[]\$)&/ka	SUPPOPULATION STATEMENT	\$11Z%	1/:1::				5515512/]1	\$/&\$C/\$SM
	LINNOMA PROM	HIL//S	49/9/. /	-	////		.≱: 55%\$5/&C	aa ba >//<
	SHIPPISPIPPIP	PIPIPIČEČE C	\$/6/6:/:/		/ \r \r/		HK/75/ Jdq&	15<&&>
		MMMMMMM	MMMMMb 00	e		, PPP	MMMMMGUUUD	USUSU1CEM
9	211211121121		8 8 8 8 10 QC/6	φ<.1.		1.0.0.0.	e e e e e e onninki	not not 123 FP

PERIODIC TABLE OF ELEMENTS

1 H Hydrogen Nonmetal					1	Ato	mic Nur	nber				I	Pub		nem	1	2 Hee Helium Noble Gas
3 Lithium Alkali Metal	4 Bee Beryllium Alkaline Earth Metal			H	H ydrogen	S Nam	ym	bol				5 B Boron Metalloid	6 C Carbon Nonmetal	7 N Nitrogen Nonmetal	8 O Oxygen Nonmetal	9 F Fluorine Halogen	10 Neon Noble Gas
11 Na Sodium Alkali Metal	12 Mgg Magnesium Alkaline Earth Metal			N	onmetal	Che	mical Gro	up Block				13 Aluminum Post-Transition Metal	14 Silicon Metalloid	15 P Phosphorus Nonmetal	16 S Sulfur Nonmetal	17 Cl Chlorine Halogen	18 Argon Noble Gas
19 K Potassium Alkali Metal	20 Calcium Alkaline Earth Metal	21 SCC Scandium Transition Metal	22 Ti Titanium Transition Metal	23 V Vanadium Transition Metal	24 Cr Chromium Transition Metal	25 Mn Manganese Transition Metal	26 Fe Iron Transition Metal	27 CO Cobalt Transition Metal	28 Nickel Transition Metal	29 CUU Copper Transition Metal	30 Zn _{Zinc} Transition Metal	31 Galium Post-Transition Metal	32 Gee Germanium Metalloid	33 As Arsenic Metalloid	34 Se	35 Br Bromine Halogen	36 Kr Krypton Noble Gas
37 Rb Rubidium Alkali Metal	38 Sr Strontium Alkaline Earth Metal	39 Y Yttrium Transition Metal	40 Zr Zirconium Transition Metal	41 Nbb Niobium Transition Metal	42 Moo Molybdenum Transition Metal	43 TC Technetium Transition Metal	44 Ru Ruthenium Transition Metal	45 Rh Rhodium Transition Metal	46 Pd Palladium Transition Metal	47 Agg Silver Transition Metal	48 Cd Cadmium Transition Metal	49 In Indium Post-Transition Metal	50 Sn Tin Post-Transition Metal	51 Sb Antime y Metalle	52 Te Tellurium Metalloid	53 I Iodine Halogen	54 Xee Xenon Noble Gas
55 CS Cesium Alkali Metal	56 Ba Barium Alkaline Earth Metal	*	72 Hff Hafnium Transition Metal	73 Ta Tantalum Transition Metal	74 W Tungsten Transition Metal	75 Re Rhenium Transition Metal	76 OS Osmium Transition Metal	77 Ir Iridium Transition Metal	78 Pt Platinum Transition Metal	79 Au Gold Transition Metal	80 Hg Mercury Transition Metal	81 TI Thallium Post-Transition Metal	82 Pb Lead	83 Bismuth Post-Transition Met	84 PO Polonium Metalloid	85 At Astatine Halogen	86 Rn Radon Noble Gas
87 Francium Alkali Metal	88 Raa Radium Alkaline Earth Metal	**	104 Rf Rutherfordium Transition Metal	105 Db Dubnium Transition Metal	106 Sg seaborgium Transition Metal	107 Bh Bohrium Transition Metal	108 HS Hassium Transition Metal	109 Mt Meitnerium Transition Metal	110 DS Darmstadtium Transition Metal	111 Rg Roentgenium Transition Metal	112 Con Copernicium Transition Metal	113 Nh Nihonium Post-Transition Metal	114 FI Flerovium Post-Transition Metal	115 MC Moscovium Post-Transition Metal	Livermorium Post-Transition Metal	117 TS Tennessine Halogen	118 Og Oganesson Noble Gas
		*	57 La Lanthanum	58 Ce Cerium	59 Pr Praseodymium	60 Nd Neodymium	61 Pm Promethium	62 Sm _{Samarium}	63 Eu	64 Gd Gadolinium	65 Tb Terbium	66 Dy _{Dysprosium}	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Lutetium
		**	89 ACC Actinium Actinide	90 Th Thorium Actinide	91 Pa Protactinium Actinide	92 U Uranium Actinide	93 Np Neptunium Actinide	94 Putonium Actinide	95 Am Americium Actinide	96 Cm Curium Actinide	97 Bk Berkelium Actinide	98 Cff Californium Actinide	99 Es Einsteinium Actinide	100 Fermium Actinide	101 Md Mendelevium Actinide	Lanthanide 102 NOO Nobelium Actinide	103 Lawrencium Actinide

Te: effect of the method used

	v2z	
Method	EA(eV)	ΔEA(eV)
DHF	1.314	0
CCSD(T)	1.033	-0.281
Exp.	1.971	

Correlation has a very large impact on the electron affinity
The CC method improves the results for a sufficiently large basis set

•

Te: effect of the cardinality of the basis set

Large effect of the zeta character for the electron affinity: 4z character necessary to obtain the desired meV accuracy

•

Correlating space: -1200au to 1200au

Te: number of correlating functions v, cv, ae

The inclusion of core-valence basis functions improves the accuracy. Allelectron functions have a slight effect (2meV)

19

Te: Effect of additional diffuse functions

Electron affinity for the cv4z basis set w.r.t. the number of correlating functions

•

The inclusion of 2 layers of **diffuse functions** reduces the error by half

Correlating space: -1200au to 1200au

Te: Number of correlated electrons and virtual cut-off

Number of correlated electrons	Virtual cut-off(au)	EA (eV)	ΔEA(eV)
24	30	1.918	0
52	50	1.917	-0.001
52	1200	1.917	0
52	3000	1.917	0
	Exp.	1.971	

> Correlating a larger space has a very small effect on the calculated EA: ~ 1 meV for the EA

Basis set: s-aug-cv4z

Po: effect of the method used

	v4z	
Method	EA (eV)	ΔEA(eV)
DHF	1.695	0
CCSD(T)	1.372	-0.323
4C+CCSD(T)+ QED + Breit [*]	1.469	

Same conclusions as for tellurium

*Borschevsky, A., Pasteka, L. F., Pershina, V., Eliav, E., & Kaldor, U. (2015). Ionization potentials and electron affinities of the superheavy elements 115-117 and their sixth-row homologues Bi, Po, and At. Physical Review A, 91(2)

Po: effect of the cardinality of the basis set

Electron affinity of Po (eV) w.r.t. the cardinality of the basis set

Same conclusions, with even a larger effect than for tellurium

Correlating space: -1200au to 1200au

Po: number of correlating functions v, cv, ae

Similar conclusions than for tellurium with a stronger effect

Po: Effect of additional diffuse functions

Electron affinity for the cv4z basis set w.r.t. the number of layers of diffuse functions

 \geq Larger effect than for tellurium: **double augmentation** improves the accuracy

Correlating space: -1200au to 1200au

Po: Number of correlated electrons and virtual cut-off

Number of correlated electrons	Virtual cut-off(au)	EA (eV)	ΔEA(eV)
48	30	1.427	0
80	300	1.424	-0.003
84	50	1.424	0
84	3500	1.424	0
4C+CCSD+ QED + Breit [*]		1.469	

Basis set: s-aug-cv4z

26

Small but **larger effect** than for tellurium.

Extrapolation to the CBS limit

- The "true" energy of the system corresponds to an infinite number of basis functions, impossible in practice
- To approach this number, we extrapolate our results
- This is done w.r.t. the cardinality of the basis set, major source of uncertainty

$$E(n) = E_{cbs} + \frac{A}{n^3}$$

Vasilyev, V. (2017). Online complete basis set limit extrapolation calculator. Computational and Theoretical Chemistry, 1115, 1-3.

TABLE III. Electron affinity of tellurium at the CCSD(T) level, using basis set of increasing completeness and various correlating spaces

Basis set	N_e corr.	Cut-off (au)	EA Te (eV)	$\Delta \text{ EA (eV)}$	Basis s
v2z	24	30	1.033		v2z
v3z			1.671	+0.638	v3z
v4z			1.863	+0.192	v4z
	50	300	1.862	-0.001	
	52	50	1.862	+0.000	
		500	1.862	+0.000	
		1200	1.863	+0.001	
cv4z		500	1.857	-0.006	cv4z
ae4z			1.855	-0.002	ae4z
s-ae4z			1.915	+0.060	s-ae4
d-ae4z			1.917	+0.002	d-ae4
t-ae4z			1.917	+0.000	t-ae4
CBS limit			1.985	+0.068	CBS li
Exp			$1.970\ 876(7)$		Ref
-					

TABLE I. Electron affinity of polonium at the CCSD(T) level, using basis set of increasing completeness and various correlating spaces

Basis set	N_{e^-corr}	Cut-off (au)	EA Po (eV)	$\Delta EA (eV)$
v2z	48	30	0.568	
v3z			1.189	+0.621
v4z			1.371	+0.182
	74	300	1.368	-0.003
	84	50	1.368	+0.000
		500	1.368	+0.000
		3500	1.368	+0.000
cv4z	84	500	1.364	-0.004
ae4z			1.359	-0.005
s-ae4z			1.418	+0.059
d-ae4z			1.420	+0.002
t-ae4z			1.420	+0.000
CBS limit			1.478	
Ref			1.469	

TABLE IV. Electron affinity of tellurium using increasing correlation in the method, using the d-aug-ae4z basis set with all electrons correlated and a virtual cut-off of 500 au

Method	EA Te (eV)	$\Delta EA (eV)$
DHF	1.694	
4C CCSD	1.823	+0.129
4C CCSD(T)	1.917	+0.094
X2C CCSD(T)	1.919	+0.002
NR CCSD(T)	1.662	-0.257
Exp	$1.970 \ 876(7)$	

•

TABLE II. Electron affinity of polonium using increasing correlation in the method, with the d-aug-ae4z basis set, all electrons correlated and a virtual cut-off of 500 au

Method	EA Po (eV)	$\Delta EA (eV)$
DHF	1.707	
4C CCSD	1.320	+0.387
4C CCSD(T)	1.420	+0.100
X2C CCSD(T)	1.422	-0.002
NR CCSD(T)	2.139	+0.717
Ref	1.469	

Extending our approach to Se (Z=36) and Lv (Z=116)

TABLE V. Electron affinity in eV for Se, Te, Po and Lv, at the CBS limit, with all electrons correlated and a virtual cutoff of 500 au, compared to the literature

•

Conclusion

• Basis set of our final calculation: d-aug-ae4z, after extrapolation to the CBS, we obtain:

EA(Po) = 1.478 eV

- **Excellent agreement** with literature: within 10 meV
- Knowledge of the **influence** of the different **basis set parameters**

•

• For **tellurium** with the same approach, we obtain:

EA(Te) = 1.985 eV

- **Excellent agreement** with the experimental value: 1.971 eV
- Calculation of the EA for Se, Te, Po, and Lv: predominance of relativistic effects while increasing Z, leading to a dramatic decrease of the EA

Outlook

- Estimation of the uncertainty
- Non-relativistic calculations
- Higher order excitations, beyond triples
- Calculation of the Breit contribution
- Calculation of **Quantum ElectroDynamic** (QED) effects

Great thanks to the people I work with...

•

https://sites.google.com/view/atomsionsmolecules

And thank you for your attention !

PhD project

• **Title**: « Relativistic coupled cluster (CC) and configuration interaction (CI) investigations of properties of heavy and superheavy elements »

Input • Two secondments of 3 months each:

University of New South Wales (UNSW) in Sydney (Australia)

- Tel Aviv University (Israel)
- Use of the DIRAC and AMBiT programs and Tel Aviv package

Estimation of relativistic and Quantum Electrodynamic Effects (QED), using CC and CI as complementary approaches

• Estimation of the uncertainty

Energy

Output

Excited states

Ground state

Personal presentation

- Bachelor Degree in Physics and Chemistry, Clermont-Ferrand - 2015
- Master Degree in Theoretical Chemistry, Toulouse - 2017
- Teacher in Secondary School, La Rochelle - 2018
- Master degree in Education in Physics and Chemistry, Toulouse - 2019
- PhD candidate at the University of Groningen – 08/2020 – present day

Te: Effect of additional diffuse functions

Basis set	IP (eV)	ΔIP(eV)	EA (eV)	ΔEA(eV)
cv4z	9.014	+0.005	1.858	-0.113
s-aug-cv4z	9.024	+0.015	1.915	-0.055
d-aug-cv4z	9.024	+0.015	1.916	-0.055
t-aug-cv4z	9.024	+0.015	1.916	-0.055
Exp.	9.010		1.971	

The inclusion of diffuse functions reduces the error by half on the EA, and seems to cause a small increase of the error on the IP... But we have more effects to take into account.

Correlating space: -1200au to 1200au

Po: Effect of additional diffuse functions

	_			
Basis set	IP (eV)	ΔIP(eV)	EA (eV)	
cv4z	8.395	-0.031	1.368	
s-aug-cv4z	8.380	-0.045	1.424	
d-aug-cv4z	8.380	-0.045	1.429	— Convergence reached
t-aug-cv4z	8.380	-0.045	1.429	
4C+CCSD+ QED + Breit [*]			1.429	
Exp.	8.426			

Larger effect than for tellurium: **double augmentation** improves the accuracy

Summ	Basis set	N_corr	Virtual cut-off (au)	EA (eV)	ΔEA(eV)
	v2z	48	30	0.568	0
	v3z	48	30	1.189	
	v4z	48	30	1.372	
	cv4z				
	ae4z				
	s-aug- ae4z				
	d-aug- ae4z				
	Ref.			1.469	