# LISA ITN Academic "fun" day

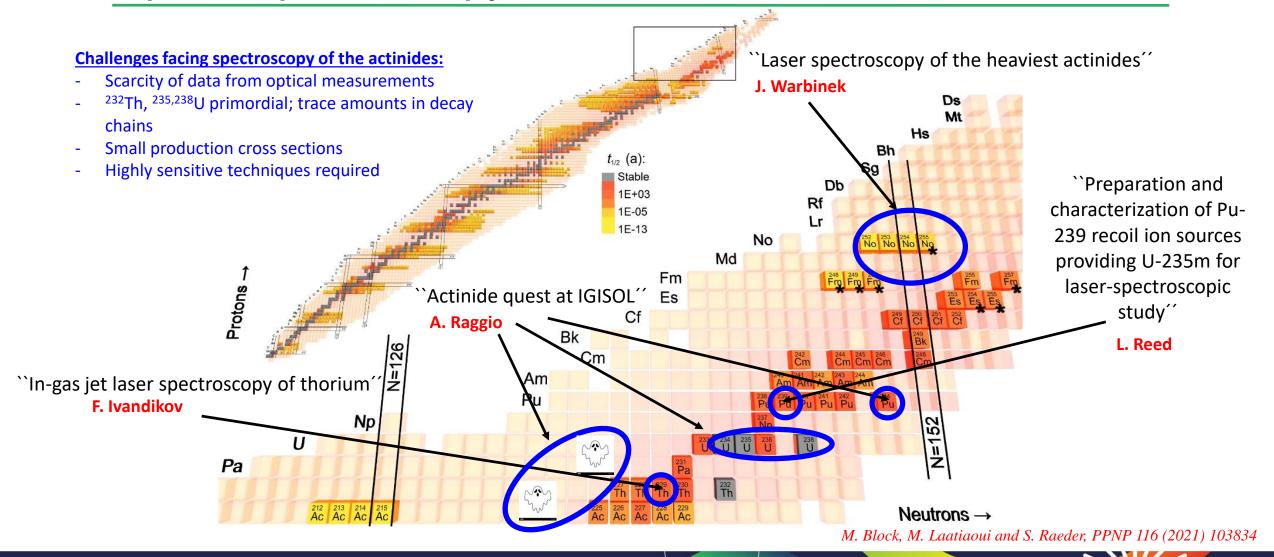
Work Package 5 – Exploring the limits of nuclear existence

lain D. Moore - University of Jyväskylä










#### Content

- Research objectives
- Current status of milestones & deliverables
- > WP-5 ESRs



## Optical spectroscopy of the heaviest elements





## Objectives of Work Package 5

- Optimize actinide sample preparation and characterization techniques for the LISA network. Lauren Reed (ESR11).
- Perform laser spectroscopy using highly sensitive techniques on isotopes of both actinide and trans-actinide elements with the goal of probing fundamental atomic and nuclear properties and to benchmark state-of-the-art atomic and nuclear theoretical calculations. Jessica Warbinek (ESR10) & Andrea Raggio (ESR4).
- Characterize and optimize the novel in-gas-jet spectroscopy technique for final implementation at GANIL-S3. Fedor Ivandikov (ESR7).



#### Milestones & schedule

| MS21   | Optimum filament setup for efficient Lr evaporation     | GSI | M12 | LISA technical design report                           |
|--------|---------------------------------------------------------|-----|-----|--------------------------------------------------------|
| MS22   | Pu targets for JYU                                      | JGU | M15 | Target delivered and verified with γ-ray spectroscopy  |
| MS23   | Offline study of atomic transitions in U: dye and Ti:sa | JYU | M18 | Laser spectroscopy results on <sup>234,235,238</sup> U |
| *MS24  | Identification of atomic states in Lr                   | GSI | M24 | LISA scientific report                                 |
| **MS25 | Picoliter injection system                              | JGU | M24 | LISA technical design report                           |
| MS26   | Setup for high-resolution in gas-jet spectroscopy       | GSI | M36 | LISA technical design report                           |
| MS27   | First high-res online LS at                             | KUL | M42 | Resonance peak linewidth <300 MHz online               |

<sup>\*</sup>MS24: Part of the beamtime completed – recommend moving by one year to 31 Oct. 2022.

**GANIL-S3** 





31 Oct.

2022

<sup>\*\*</sup>MS25: Expected delivery date 30 April 2022 (coordinating with Hannover)

#### Deliverables



| Deliverable | Deliverable title                                   | Lead beneficiary | Due date |
|-------------|-----------------------------------------------------|------------------|----------|
| D5.1        | Optimized geometry of the gas cell nozzle           | KUL              | 24       |
| *D5.2       | Laser ablation source                               | JYU              | 24       |
| D5.3        | Off-line U studies                                  | JYU              | 30       |
| D5.4        | Preparation of characterization of samples for LISA | JGU              | 36       |
| D5.5        | Precise data of atomic and nuclear properties of Lr | GSI              | 42       |
| D5.6        | Exotic U studies (off- and on-line production)      | JYU              | 48       |

31 Oct. 2022

Deliverables primarily produced as reports. D5.5 and D5.6 are ``other''.

<sup>\*</sup>Note that the technical design report for the laser ablation source is still listed as ``Pending´´ although it has been submitted.



## Work Package 5: ESRs



Andrea Raggio (JYU) – ESR 4



Fedor Ivandikov (KUL) – ESR 7
\*Started PhD position at end of January 2022.



KU LEUVEN



Jessica Warbinek (GSI) – ESR 10



Lauren Reed (JGU) - ESR 11



