Actinide quest at IGISOL

A. Raggio¹, I. Moore¹, I. Pohjalainen¹ and the IGISOL group

¹ Accelerator Laboratory, Department of Physics, University of Jyväskylä FIN-40014 Jyväskylä, Finland

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receive funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

Content

Physics Case

- Optical spectroscopy for nuclear physics
- A test bench for collective vs single particle behaviour

Content

Physics Case

- Optical spectroscopy for nuclear physics
- A test bench for collective vs single particle behaviour

Offline studies

- Resonance ionization of Plutonium samples
- The ^{235m}U isomeric state

Content

Physics Case

- Optical spectroscopy for nuclear physics
- A test bench for collective vs single particle behaviour

Offline studies

- Resonance ionization of Plutonium samples
- The ^{235m}U isomeric state

Online studies

• Fusion evaporation reaction on Th metallic target

PHYSICS CASES

June 17 , 2022 LISA - Academic Day 2

Optical Spectroscopy on Actinides

A useful tool to extract fundamental nuclear ground state properties

Nuclear model-independent measurement

¹Updated from P. Campbell et al., PPNP 86 (2016) 127–180

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Optical Spectroscopy on Actinides

June 17 2022 LISA - Academic Day

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

N=152

General lack of optical data Lack of Stable isotopes

Challenging Production

Neutron number

(7=80)(Z=90)Th (Z=92) Pu (7=94

Am (7=95

Cm (7=96)

125 130 135 140 145 150

No (Z=102)

(fm²) -0.50

-0.75 <2>> -1.00

> -1.25 -1.50 -1.75 -

Octupole Deformation and Charge Radii

nuclear properties

³M. Bender, private communication ⁴D. Fink et al., PRX 5 (2015) 011018

June 17 , 2022 LISA - Academic Dav

OFFLINE STUDIES

June 17 , 2022 LISA - Academic Day 5

Filament based sources

Resonance Ionization Spectroscopy of Pu samples

- Development of gas-cell for offline actinide studies
- $^{238-242,244}$ Pu on Ta substrate, T=1100°C
- Molecular formation in He and Ar buffer Gas⁵

⁵I. Pohjalainen, NIM B 376 (2016) 233

LÏSA

June 17 , 2022 LISA - Academic Day

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Filament based sources

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Resonance Ionization Spectroscopy of Pu samples

- Development of gas-cell for offline actinide studies
- $^{238-242,244}$ Pu on Ta substrate, T=1100°C
- Molecular formation in He and Ar buffer Gas⁵

The gas-cell environments has been observed to greatly reduce the sensitivity of the ionization scheme

⁷S.Raeder et al. ABC 404 (2012) 2163 (2012)

The gas-cell environments has been observed to greatly reduce the sensitivity of the ionization scheme

⁷S.Raeder et al. ABC 404 (2012) 2163 (2012)

Collisional de-excitation phenomena

The gas-cell environments has been observed to greatly reduce the sensitivity of the ionization scheme \rightarrow Competition between resonant laser excitation and collisional de-excitation

⁷S.Raeder et al. ABC 404 (2012) 2163 (2012)

⁸A.Raggio et al. Atoms 10 (2022)40

JYVÄSKYLÄN YLIOPISTO

U 235	
26 m	7.038 [.] 10 ⁸ a
א (0,07) e⁻	α 4.398; sf Ne; γ 186

Second lowest isomeric state in the nuclide landscape

• 76 eV

• \sim 26 minutes half life

June 17 , 2022 LISA - Academic Day

Second lowest isomeric state in the nuclide landscape

- 76 eV
- ~26 minutes half life
- Populated from the alpha decay of $^{\rm 239}{\rm Pu}$

Second lowest isomeric state in the nuclide landscape

- 76 eV
- ~ 26 minutes half life
- Populated from the alpha decay of ²³⁹Pu

Source

IS

Extraction

Measurement

Second lowest isomeric state in the nuclide landscape

- 76 eV
- ~ 26 minutes half life
- Populated from the alpha decay of ²³⁹Pu

Source

15

Extraction

Measurement

Actinide gas-cell

June 17 , 2022 LISA - Academic Dav

Actinide gas-cell

Two sources back to back longitudinally mounted Testing of the sources and configurations in August

June 17 , 2022 LISA - Academic Day

Collinear Laser Spectroscopy

⁹A. Koszorus et al. submitted to Spectrochimica Acta Part B: Atomic Spectroscopy.

June 17 , 2022 LISA - Academic Day

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Collinear Laser Spectroscopy

 $\rightarrow\,$ Find optimal atomic transition

⁹A. Koszorus et al. submitted to Spectrochimica Acta Part B: Atomic Spectroscopy.

.isa

June 17 , 2022 LISA - Academic Dav

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Groundwork: CLS of ^{nat}U

- ²³⁴U 0.0054%, ²³⁵U 0.7204%, ²³⁸U 99.2742%
- Offline study of 12 ionic transition in the UV range 288-314 nm
- Optimum transition had a spectroscopy efficiency of \sim 1/3000 photons/ion

Groundwork: CLS of ^{nat}U

HFS and Isotope shifts determined ¹⁰

11

ONLINE STUDIES

12

Online Production

 11 R. Haas et al., NIMA 874 (2017) 43 12 J. Ärje, J. Äystö et al., Phys. Rev. Lett. 54 (1985) 99

June 17 , 2022 LISA - Academic Day

Production yields

- Decay Spectroscopy experiment to evaluate yields?
- Lack of experimental data
- Simulation routines gives different results $$^{232}{\rm Th}(p,pxn){\rm Y}$$

14

Production yields

- Decay Spectroscopy experiment to evaluate yields?
- Detecting isotope with $\sim 1 \text{ ms} < \tau < \sim 3 \text{ h}$.
- 65 MeV selected as optimal energy (8 nucleons evaporated)
- Lack of experimental data
- Simulation routines gives different results red) ²³²Th(p,pxn)Y

Decay Spectroscopy

June 17 , 2022 LISA - Academic Day

226 Isobar chains

226 Isobar chains

SUMMARY AND OUTLOOK

June 17 , 2022 LISA - Academic Day

Summary

Interest in Actinide region

- Optical spectroscopy data
- Basic nuclear decay and structure information

Studies

- Gas induced effects in optical spectroscopy
- ^{235m}U isomeric state investigation
- Online production for neutron deficient actinides

Outlook

Collisional de-excitation

• Planned RIS measurement of U

^{235m}U isomer

- Testing of the sources
- CLS measurement

Online production

• Planned experiment with ²³³U target (November)

Thank you

100.00

June 17 , 2022 LISA - Academic Day

20