

Precision spectroscopy of the 2S-6P transitions in atomic hydrogen and deuterium

V. Wirthl, L. Maisenbacher, D. Taray, O. Amit, R. Pohl, T. W. Hänsch and Th. Udem

FFK Conference, May 2023

Hydrogen and deuterium energy levels theory

Hydrogen/deuterium energy levels based on bound-state Quantum Electrodynamics:

$$E_{nlj} = hc R_{\infty} \left(-\frac{1}{n^2} + f_{nlj}(\alpha, \frac{m_e}{m_N}) + \frac{\delta_{l0}}{n^3} \left(C_{\rm NS} r_N^2 + C_{\rm pol} + \text{h.o.n.e.} \right) \right)$$

Rydberg

constant

$$hc R_{\infty} = m_e c^2 \times \frac{\alpha^2}{2}$$

$$\alpha$$
fine-structure constant

...related to the electron mass and the fine-structure constant S

 m_e electron-to-nucleus mass ratio m_N

Hydrogen and deuterium energy levels theory

Hydrogen/deuterium energy levels based on bound-state Quantum Electrodynamics:

$$E_{nlj} = hc R_{\infty} \left(-\frac{1}{n^2} + f_{nlj}(\alpha, \frac{m_e}{m_N}) + \frac{\delta_{l0}}{n^3} \left(C_{\text{NS}} r_N^2 + C_{\text{pol}} + \text{h.o.n.e.} \right) \right)$$
QED effects with point-like nucleus
$$\frac{1 - \log \text{QED: self-energy}}{\alpha \alpha^2 \times \alpha^3 \ln(\alpha^2)} \xrightarrow{1 - \log \text{QED: vac.-pol.}}{\alpha \alpha^2 \times \alpha^3} \xrightarrow{1 - \log \text{QED: vac.-pol.}}{\alpha \alpha^2 \times \alpha^3 \ln(\alpha^2)} \xrightarrow{\alpha^2 \times \alpha^3} \left(\frac{1 - \log \text{QED: vac.-pol.}}{\alpha \alpha^2 \times \alpha^2 r_N^2} \right) \xrightarrow{1 - \log \text{QED: vac.-pol.}}{\alpha \alpha^2 \times \alpha^2 r_N^2} \xrightarrow{\alpha^2 \times \alpha^2 \tilde{C}_{\text{pol}}}{\alpha \alpha^2 \times \alpha^2 \tilde{C}_{\text{pol}}} \xrightarrow{\alpha^2 \times \alpha^3 \tilde{C}_{\text{pol}}}{\alpha \alpha^2 \times \alpha^2 \tilde{C}_{\text{pol}}} \xrightarrow{\alpha^2 \times \alpha^3 \tilde{C}_{\text{pol}}}{\alpha \alpha^2 \times \alpha^4} \xrightarrow{q + \text{other terms}} + \text{higher order nuclear effects (h.o.n.e.)}$$

H 2S-6P vs D 2S-6P: contributions to transition frequency

		Hydrogen $2S_{1/2}$ - $6P_{1/2}$ (Hz)	Deuterium $2S_{1/2}$ - $6P_{1/2}$ (Hz)
M	Dirac (with $m_e \to m_{\rm red}$)	730691021696054	730 889 842 123 184
N N N N N N N N N N N N N N N N N N N	Rel. nuclear recoil	1129173	566917
	Radiative recoil	1540	771
	1-loop QED		
e ⁺ e ⁻ or µ ⁺ µ ⁻	self-energy	-1071679859	-1072517882
$\int \int \frac{\partial f}{\partial r} \frac{dr}{h^+ h^-}$	vacuum-polarization	26853088	26875014
	$\mu^+\mu^-$ vacuum-pol.	634	634
—	hadronic vacuum-pol.	425	425
	2-loop QED	-90477	-90551
≽ —	3-loop QED	-236	-236
→	Finite nuclear size		
	$\propto lpha^4$	-138394	-885943
→	$\propto \alpha^5$	5	19
	$\propto lpha^6$	-74	-433
	Nuclear polarizability		
	$\propto \alpha^5$	8	2722
→	$\propto lpha^6$	-49	68
	Nuclear self-energy	-584	-153
	Total	730689977771255	730888796074559
	Theory uncertainty	199	181
	Uncert. from constants	1532	1529
	Total uncertainty	1545	1539

Hydrogen 2S-6P: higher-order nuclear size effects and polarizability < 0.1 kHz Deuterium 2S-6P: higher-order nuclear size 0.4 kHz, polarizability 2.7 kHz

 $N \Longrightarrow$

FFK Conference May 2023

Motivation for hydrogen and deuterium spectroscopy

Hydrogen/deuterium energy levels including QED and nuclear effects:

$$E_{nlj} = hc \, \mathbb{R}_{\infty} \left(-\frac{1}{n^2} + f_{nlj}(\alpha, \frac{m_e}{m_N}) + \frac{\delta_{l0}}{n^3} \left(C_{\rm NS} r_N^2 + C_{\rm pol} + \text{h.o.n.e.} \right) \right)$$

Precise *expressions* as a function of theory *parameters* (constants)

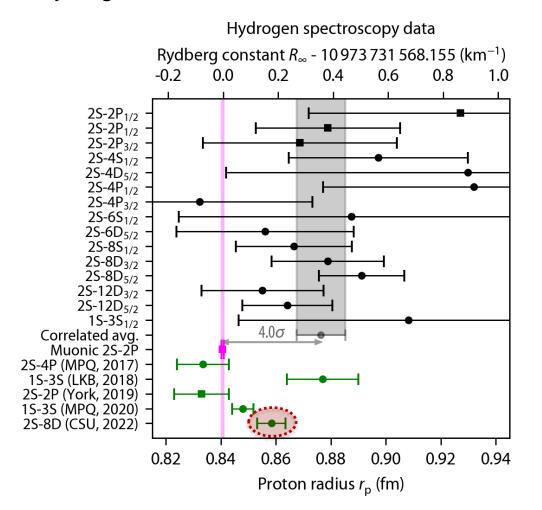
Motivation: metrology, test QED and consistency of Standard Model, nuclear physics

Constants $\alpha, m_e/m_N, \cdots$ from e.g. Penning traps, atom interferometry

Two constants left for us:

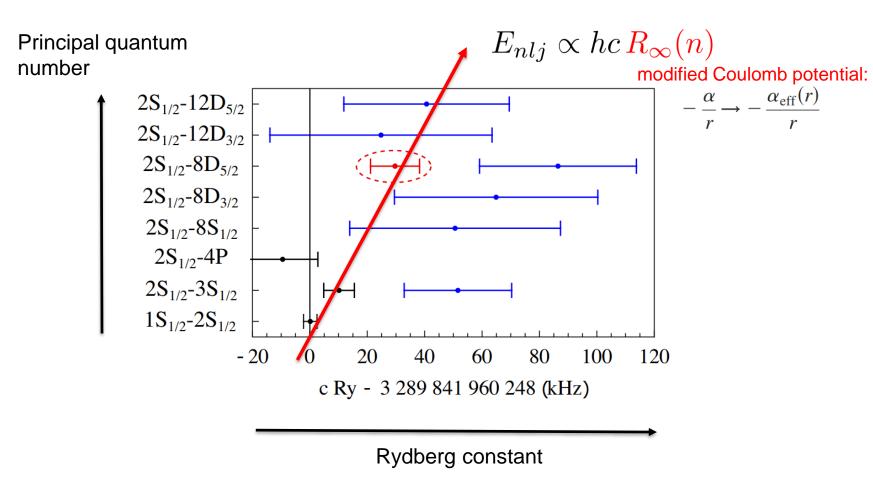
Rydberg constant R_∞ and RMS charge radius r_N^2

→ need at least 2 measurements, more for tests


Measurement 1): e.g. narrow **1S-2S transition** using Doppler-free two-photon spectroscopy in hydrogen [1] and deuterium [2-3]

[1] C. G. Parthey et al., PRL 107, 203001 (2011); [2] C. G. Parthey et al., PRL 104, 233001 (2011); [3] R. Pohl et al., Metrologia 54, L1 (2017)

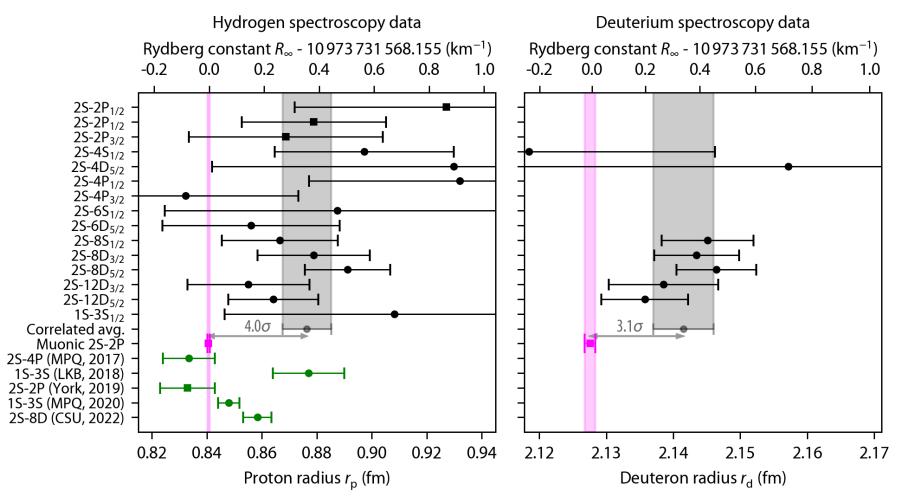
Hydrogen and deuterium spectroscopy data overview



Considering hydrogen and deuterium separately: 1S-2S transition measurement in hydrogen or deuterium combined with other transition measurement:

,New Physics'?

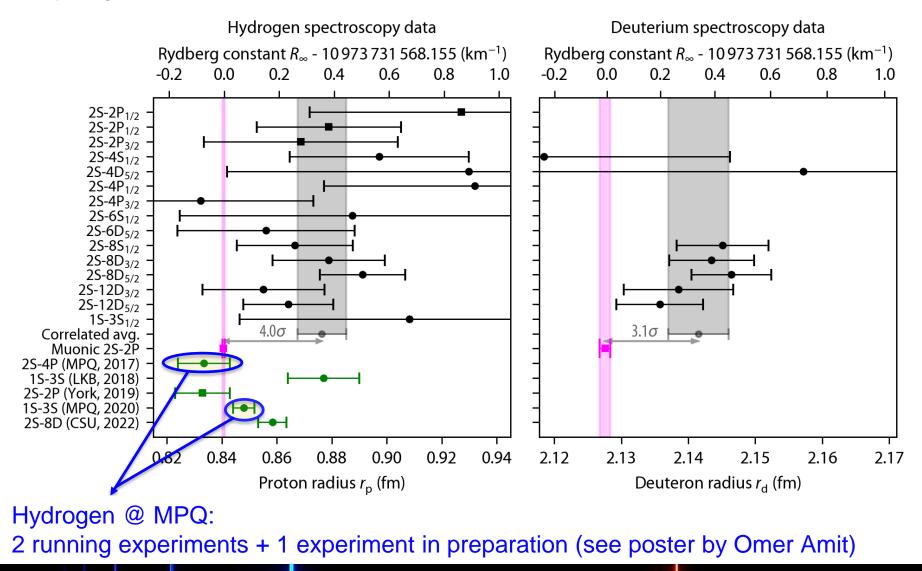
Speculation about 'new physics' in the recent paper of 2S-8D measurement [1]:


2S-*n***P spectroscopy provides test for** *n***-dependent Rydberg constant** (undiscovered bosons can provide additional coupling between nucleus and electron)

[1] A. D. Brandt et al., PRL 128, 023001 (2022)

Hydrogen and deuterium spectroscopy data overview

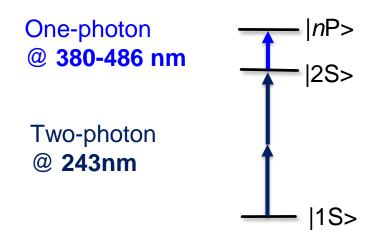
Considering hydrogen and deuterium separately: 1S-2S transition measurement in hydrogen or deuterium combined with other transition measurement:



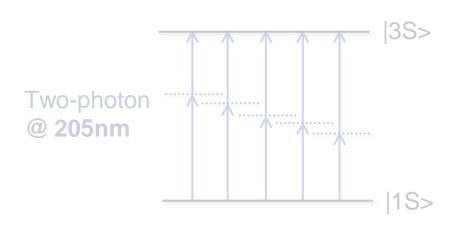
Similar discrepancy for the muonic and electronic deuterium, but so far no recent data from deuterium spectroscopy

Hydrogen and deuterium spectroscopy data overview

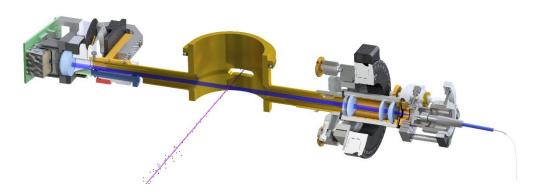
Considering hydrogen and deuterium separately: 1S-2S transition measurement in hydrogen or deuterium combined with other transition measurement:

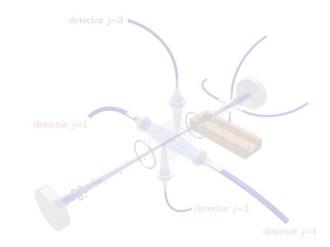

FFK Conference May 2023

Two running hydrogen experiments at MPQ



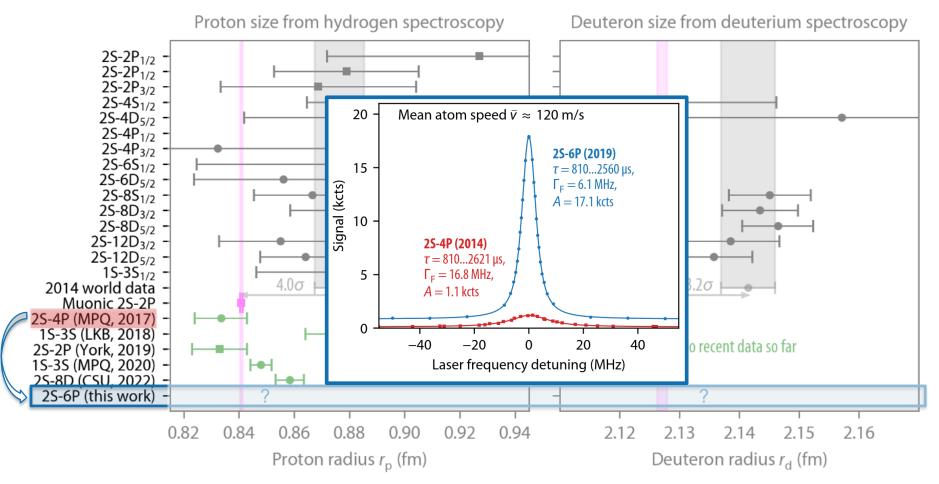
1S-2S and 2S-nP experiment


1S-3S experiment

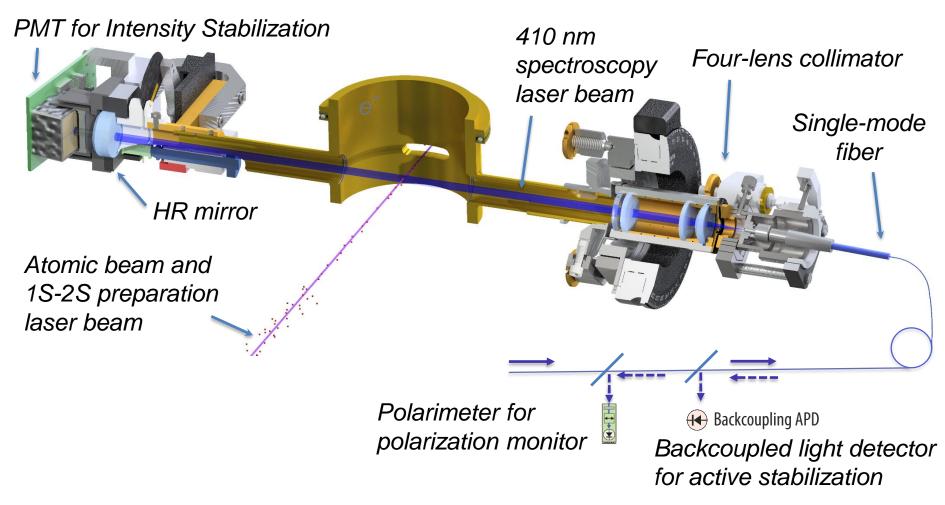


CW laser spectroscopy

Direct frequency comb spectroscopy



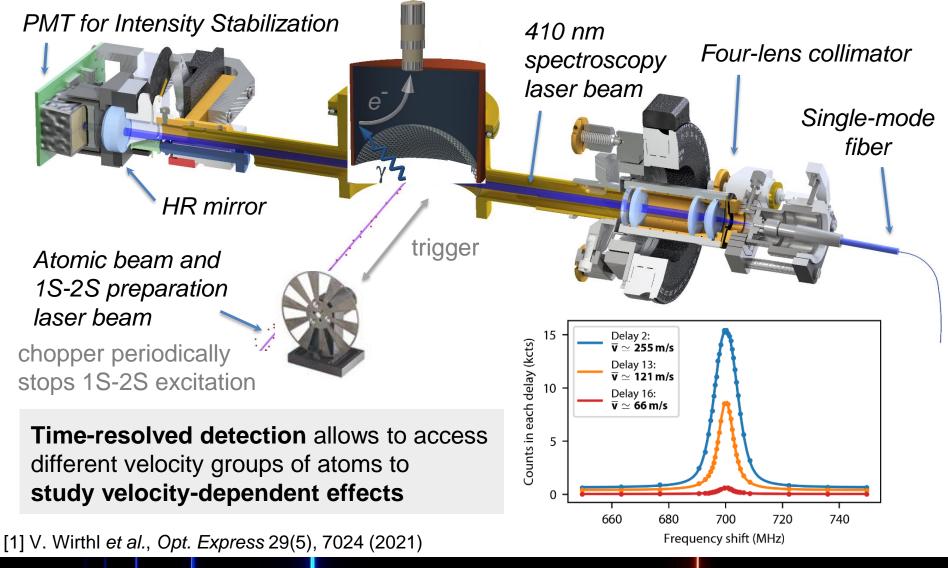
Hydrogen and deuterium spectroscopy data overview


Considering hydrogen and deuterium separately: 1S-2S transition measurement in hydrogen or deuterium combined with other transition measurement:

This work: 2S-6P transition measurement in hydrogen and deuterium (improves 2S-4P experiment: up to 16x higher signal and 3x lower linewidth)

First-order Doppler shift suppression

Improved active fiber-based retroreflector for near UV [1] provides high-quality wavefront-retracing anti-parallel laser beams:



[1] V. Wirthl et al., Opt. Express 29(5), 7024 (2021)

First-order Doppler shift suppression

Improved active fiber-based retroreflector for near UV [1] provides high-quality wavefront-retracing anti-parallel laser beams:

V. Wirthl, MPQ

FFK Conference May 2023

Preliminary uncertainty of hydrogen 2S-6P measurement

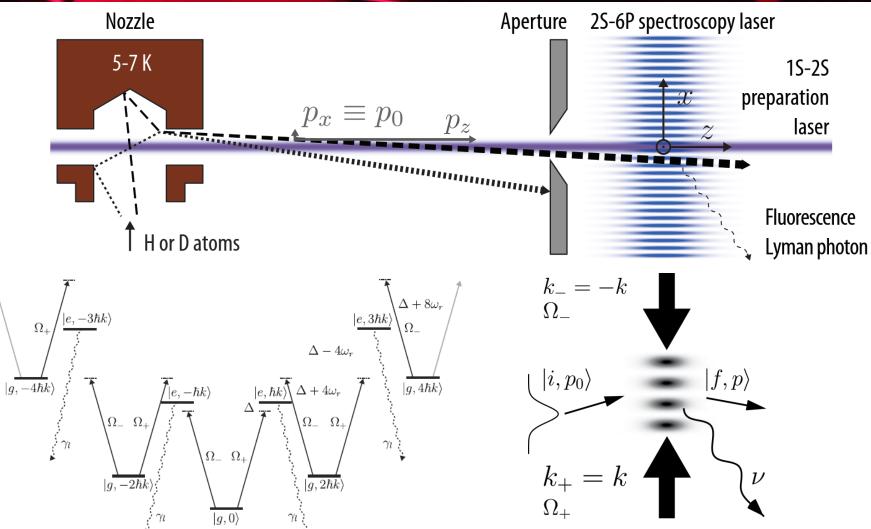


Table 2.3: List of corrections $\Delta \nu$ and uncertainties σ for the determination of the 2S-6P_{1/2} ($\nu_{1/2}$) and the 2S-6P_{3/2} ($\nu_{3/2}$) transition frequencies, as well as of the the 2S-6P fine-structure centroid ν_{2S-6P} , formed by combining $\nu_{1/2}$ and $\nu_{3/2}$. All values are given in units of kHz. BBR: blackbody radiation, HFS: hyperfine structure, FS: fine structure.

	2	$\begin{array}{c} 2\mathbf{S}_{1/2}^{F=0}{-}6\mathbf{P}_{1/2}^{F=1} \\ (\nu_{1/2}) \end{array}$		$\begin{array}{c} 2\mathbf{S}_{1/2}^{F=0}{-}6\mathbf{P}_{3/2}^{F=1} \\ (\nu_{3/2}) \end{array}$		2S-6P FS centroid $(\nu_{\rm 2S-6P})$	
Contribution (kHz)		$\Delta \nu$	σ	$\Delta \nu$	σ	$\Delta \nu$	σ
Statistics (incl. Dop	oler shift)		0.49		0.60		0.43
Light force shift		0.70	0.21	1.31	0.39	1.11	0.33
Largest systematic effect: light force shift					$0.29 \\ 0.02$	0.05 -0.14	$\begin{array}{c} 0.05 \\ 0.02 \end{array}$
dc-Stark shift		0.20	0.20	0.05	0.02	0.10	0.02 0.10
BBR-induced shift		0.29	0.03	0.29	0.03	0.29	0.03
Zeeman shift		0.00	0.05	0.00	0.23	0.00	0.17
Pressure shift		0.00	0.01	0.00	0.01	0.00	0.01
Frequency standard		0.00	0.07	0.00	0.07	0.00	0.07
Total without recoil	& HFS corr.	1.25	0.82	1.49	0.81	1.41	0.58
Recoil shift	-	1176.03	0.00	-1176.03	0.00	-1176.03	0.00
Hyperfine structure	corrections					-132985.252	0.007
Total		1174.78	0.82	-1174.54	0.81	-134159.872	0.58

Light force shift

Atoms delocalized over standing wave (205 nm periodicity) and can be described as plane wave with defined transverse momentum p_0

Preliminary hydrogen 2S-6P measurement result

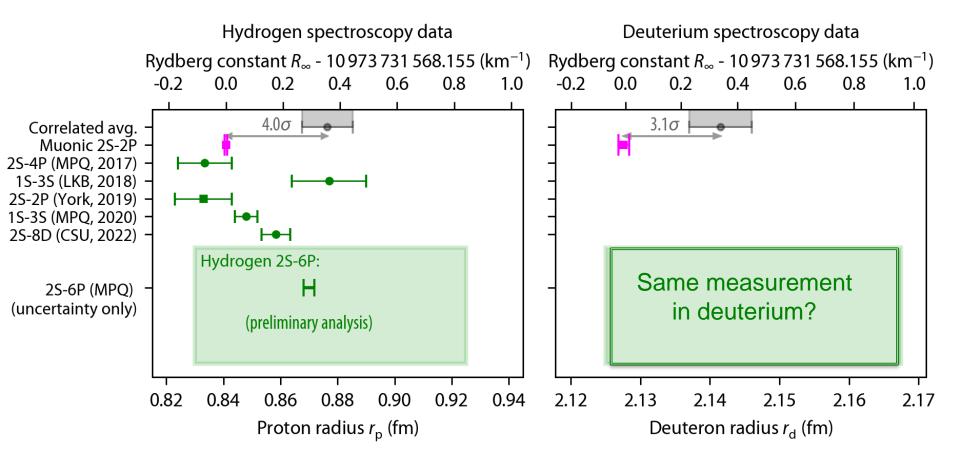
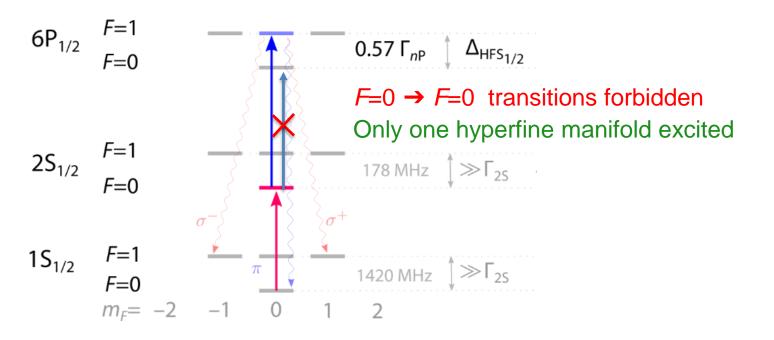
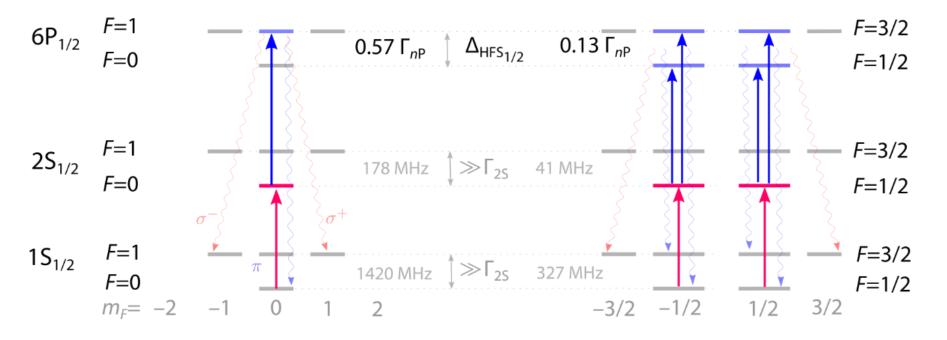


Table 2.3: List of corrections $\Delta \nu$ and uncertainties σ for the determination of the 2S-6P_{1/2} ($\nu_{1/2}$) and the 2S-6P_{3/2} ($\nu_{3/2}$) transition frequencies, as well as of the the 2S-6P fine-structure centroid ν_{2S-6P} , formed by combining $\nu_{1/2}$ and $\nu_{3/2}$. All values are given in units of kHz. BBR: blackbody radiation, HFS: hyperfine structure, FS: fine structure.

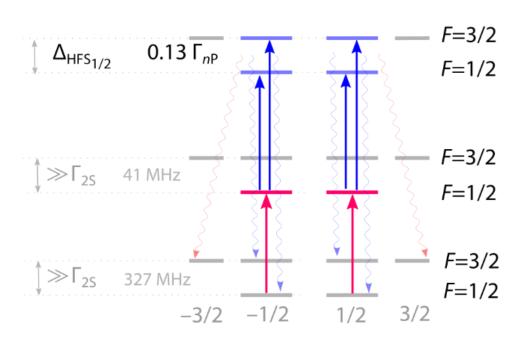
	$2\mathbf{S}_{1/2}^{F=0}{-6}\\(\nu_{1/2}$	× /	$2S_{1/2}^{F=0}-6\\ (\nu_{3/2}$		2S-6	$5P FS cet (u_{2S-6P})$	
Contribution (kHz)	$\Delta \nu$	σ	$\Delta \nu$	σ		$\Delta \nu$	σ
Statistics (incl. Doppler shift)		0.49		0.60			0.43
Light force shift	0.70	0.21	1.31	0.39		1.11	0.33
Quantum interference shifts	0.21	0.58	-0.02	0.29		0.05	0.05
Second-order Doppler shift	-0.15	0.02	-0.14	0.02		-0.14	0.02
dc-Stark shift	0.20	0.20	0.05	0.05		0.10	0.10
BBR-in			0.00	0.00		0.29	0.03
Zeeman Preliminary Hydr	ogen 2	S-6F	' unceri	tainty	y:	0.00	0.17
Pressure 0.6 kHz with only	, 1 <u>4</u> k⊢		rrection	ופ		0.00	0.01
Frequen O.O KI 12 WITH OTHY				13		0.00	0.07
Total without recoil & HFS corr.	1.25	0.82	1.49	0.81		1.41	0.58
Recoil shift	-1176.03	0.00	-1176.03	0.00	-1	176.03	0.00
Hyperfine structure corrections						985.252	0.007
Total	-1174.78	0.82	-1174.54	0.81	-134	159.872	0.58



Data analysis of our hydrogen 2S-6P measurement campaign currently ongoing (with blind offset), preliminary uncertainty result:


Hydrogen: I = 1/2

Deuterium: I = 1

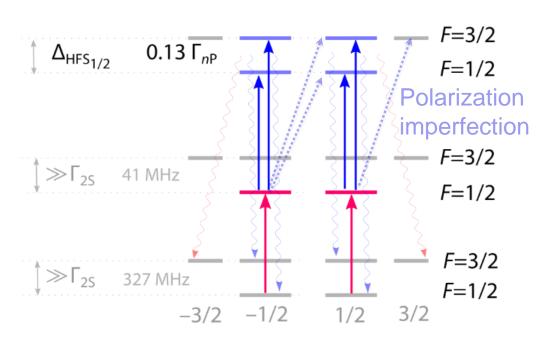


Additionally allowed transitions

Deuterium: I = 1

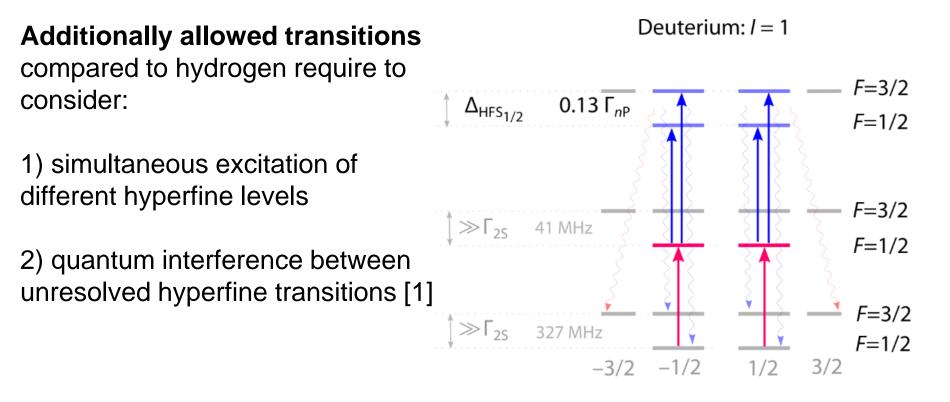
compared to hydrogen require to consider:

1) simultaneous excitation of different hyperfine levels



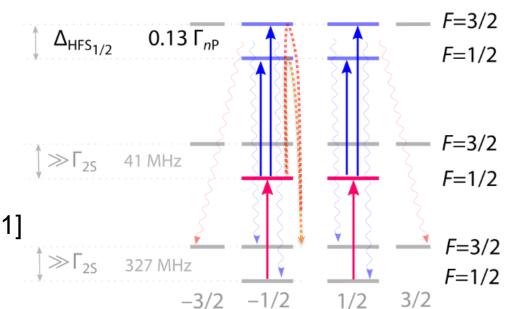
Additionally allowed transitions

Deuterium: I = 1


compared to hydrogen require to consider:

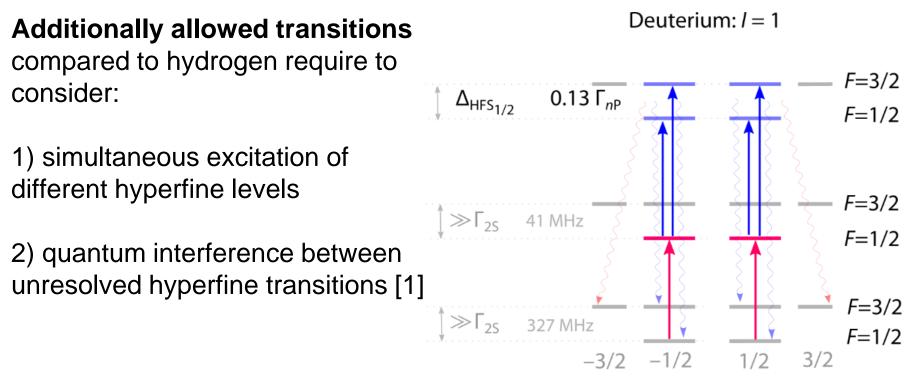
1) simultaneous excitation of different hyperfine levels

Residual circular polarization changes the dipole ratio of excited hyperfine state manifolds


Additionally allowed transitions

Deuterium: I = 1

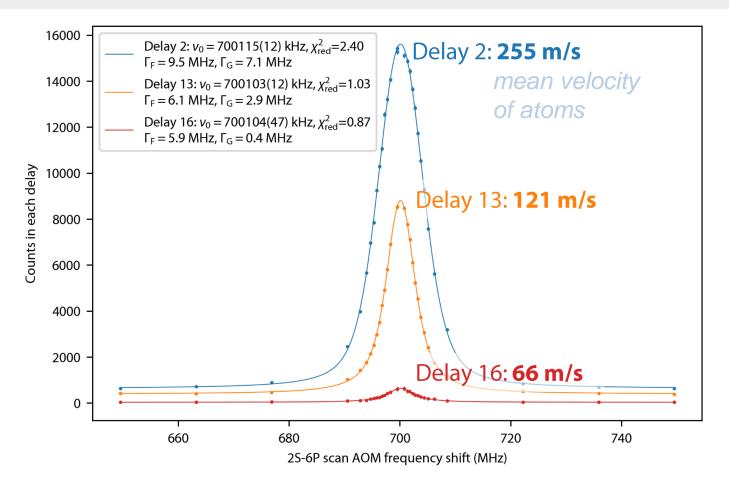
compared to hydrogen require to consider:


1) simultaneous excitation of different hyperfine levels

2) quantum interference between unresolved hyperfine transitions [1]

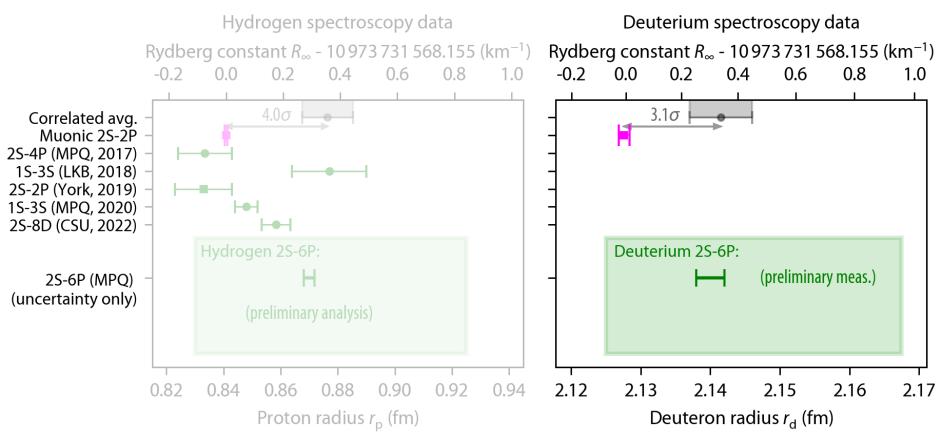
Possible quantum interference between the different signal paths from the two hyperfine manifolds

	Detection different for LH/RH circular pol.	Initital state population asymmetry	Residual circular polarization
1) Shift from dipole ratio		x	
2) Unresolved Q.I.		x	

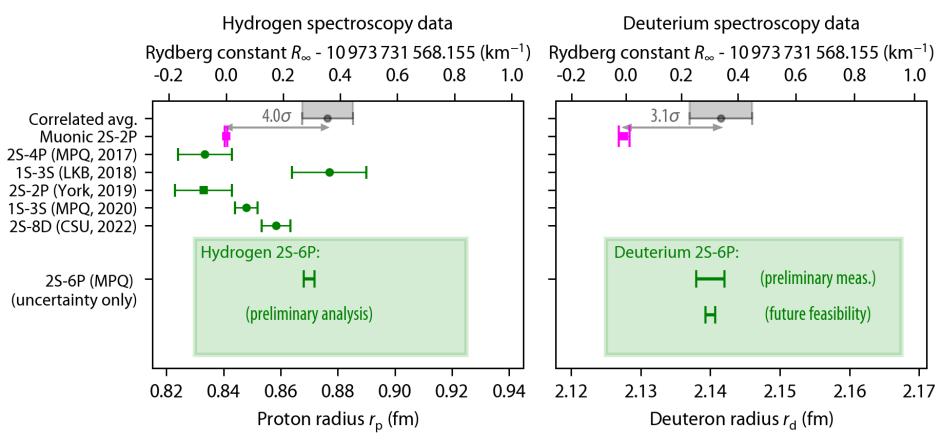

We find that both effects from additional transitions in deuterium doubly suppressed

[1] Th. Udem et al., Ann. Phys. 531(5), 1900044 (2019)

V. Wirthl, MPQ

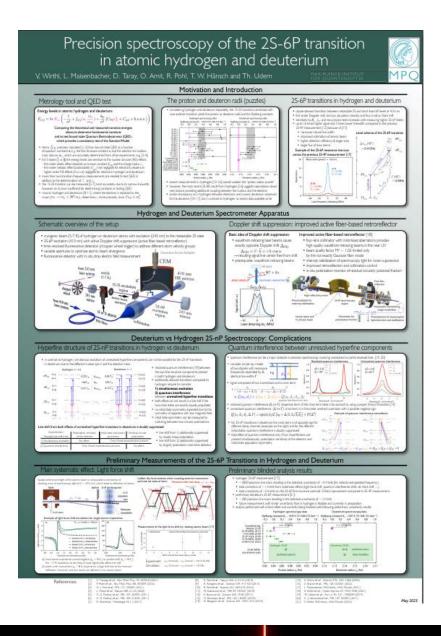

Observed deuterium 2S-6P transition signal with a high count rate, low background:

Preliminary measurement: ~ 300 deuterium 2S-6P precision line scans



Preliminary deuterium 2S-6P measurement campaign result:

Preliminary deuterium 2S-6P measurement campaign result:


Deuterium 2S-6P measurement campaign currently in preparation → feasible with a similar precision as in hydrogen See poster for more details

See poster

Precision spectroscopy of the 2S-6P transition in atomic hydrogen and deuterium

for more details!

V. Wirthl, MPQ

FFK Conference May 2023

Thank you for your attention!

Hydrogen team

Derya Taray

Omer

Amit

,

Vitaly Wirthl

Lothar Maisenbacher (UC Berkeley) Looking for new PhD students!

REFER

Randolf Pohl

Thomas Udem

Theodor W. Hänsch