Towards Precision Tests of Bound-state QED in U⁹⁰⁺ Using Novel Metallic Magnetic Calorimeter Detectors

<u>Philip Pfäfflein</u>^{a,b,c}, Steffen Allgeier^d, Zoran Andelkovic^b, Sonja Bernitt^{a,b,c}, Alexander Borovik^e, Louis Duval^{f,g}, Andreas Fleischmann^d, Oliver Forstner^{a,b,c}, Marvin Friedrich^d, Jan Glorius^b, Alexandre Gumberidze^b, Christoph Hahn^{a,b}, Frank Herfurth^b, Daniel Hengstler^d, Marc Oliver Herdrich^{a,c}, Pierre-Michel Hillenbrand^e, Anton Kalinin^b, Markus Kiffer^{a,c}, Felix Martin Kröger^{a,b,c}, Maximilian Kubullek^c, Patricia Kuntz^d,
Michael Lestinsky^b, Bastian Löher^b, Esther Babette Menz^{a,b,c}, Tobias Over^{a,c}, Nikolaos Petridis^b, Stefan Ringleb^{a,c}, Ragandeep Singh Sidhu^{b,h}, Uwe Spillmann^b, Sergiy Trotsenko^{a,b},
Andrzej Warczakⁱ, Günter Weber^{a,b}, Binghui Zhu^{a,b,c}, Christian Enss^d, and Thomas Stöhlker^{a,b,c}

^a Helmholtz Institute Jena, Jena, 07743, Germany

^b GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, 64291, Germany

^c Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Jena, 07743, Germany

^d Kirchhoff Institute for Physics, Heidelberg University, Heidelberg, 69210, Germany

^e I. Physikalisches Institut, Justus Liebig University Giessen, Giessen, 35392, Germany

^f Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, Paris, 75005, France

^g Institut des NanoSciences de Paris, CNRS, Sorbonne Université, 75005, Paris, France ^hSchool of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom ⁱ Marian Smoluchowski Institute of Physics, Jagiellonian University in Kraków, Kraków, 30-348, Poland

Helium-like ions are the simplest atomic multi-body systems. Their study along the isoelectronic sequence provides a unique testing ground for the interplay of the effects of electron–electron correlation, relativity and quantum electrodynamics (QED). Especially heavy highly charged ions are ideal for testing higher-order QED terms. Their contributions are on the 1 eV level for transition energies of 100 keV. However, for ground state transitions in ions with nuclear charge Z > 54, where photons reach such energies, there is currently no data available with sufficient resolution and accuracy to challenge state-of-the-art theory [1]. In this context, the recent development of metallic magnetic calorimeter (MMC) detectors is of particular importance. Their high spectral resolution of a few tens of eV FWHM at 100 keV incident photon energy, in combination with a broad spectral acceptance down to a few keV, will enable new types of precision X-ray experiments [2, 3].

First X-ray spectroscopy studies at the electron cooler of the low-energy storage ring CRYRING@ESR at GSI, Darmstadt have recently been performed for highly-charged ions [4, 5]. We report on the second campaign where MMC detectors have been used to study X-ray emission associated with the formation of excited helium-like uranium (U⁹⁰⁺) as a result of radiative recombination between stored U⁹¹⁺ ions and cooler electrons. The achieved spectral resolution of better than 90 eV at X-ray energies close to 100 keV enabled us to resolve the substructure of the K α_1 and K α_2 lines for the first time. This fivefold resolution improvement, compared to previous studies paves the way for future precision tests of strong-field QED and many-body effects.

^[1] P Indelicato 2019 J. Phys. B: At. Mol. Opt. Phys. 52 232001

^[2] D Hengstler et al 2015 Phys. Scr. 2015 014054

^[3] S Kraft-Bermuth et al. 2018 Atoms 2018 59

^[4] B Zhu et al. 2022 Phys. Rev. A 105 052804

^[5] Ph Pfäfflein et al. 2022 Phys. Scr. 97 114005