Ramsey-Comb Spectroscopy of the $EF^1\sum_g^+ - X^1\sum_g^+(0,0) Q_0$ and Q_1 Transitions in Molecular Hydrogen and Deuterium

A. Martínez de Velasco^a, <u>C. Roth</u>^a, E.L. Gründeman^a, V. Barbé^a, K.S.E. Eikema^a

As the simplest neutral molecule, molecular hydrogen (H₂) is a good testing ground for molecular quantum theory. Its dissociation energy D₀ has become a benchmark value to test *ab initio* quantum molecular calculations. An experimental value for D₀ can be obtained by relating the ionization energy of H₂, to the ionization energy of atomic hydrogen and the dissociation energy of the H₂ ion. By combining our measurements of the X to EF Q₀ and Q₁ transitions with the determination of the energy difference between the EF state and the continuum carried out at the ETH Zurich [1], we can provide an experimental value for the ionization energy of H₂, and therefore of D₀. In order to measure the Q₀ transition in H₂, we perform 2-photon Ramsey-comb Spectroscopy (RCS) [2] in the VUV at 202 nm. RCS uses two amplified and up-converted pulses out of the infinite pulse train of a frequency comb laser to perform a Ramsey-like excitation. Recent improvements to the experimental setup enabled the determination of the X to EF transition frequency in H₂ and D₂ with 30 and 19 kHz accuracy, respectively [4]. We will report on these measurements and discuss their implications regarding an improved determination of the dissociation energy of H₂ and D₂, and a comparison with theory.

[1] Hölsch et al., PRL 122, 103002 (2019)

- [2] Morgenweg et al, Nat. Phys. 10, 30–33 (2014)
- [3] Altmann et al., PRL 120, 043204 (2018)
- [4] Roth et al., Manuscript submitted (2023)