Calculation of isotope shifts and King plot nonlinearities in Ca⁺

V. A. Yerokhin^{*a*}, <u>A. V. Viatkina^{*b,c*}</u>, A. Surzhykov^{*b,c*}

^a Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

^b Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany

^c Technische Universität Braunschweig, 38106 Braunschweig, Germany

High-precision spectroscopy is currently in the spotlight of experimental research, particularly as a means of testing physics beyond standard model. One of the methods to detect new interactions is King plot analysis [1]. Recently, a significant King-plot nonlinearity has been discovered in Yb⁺ transitions [2, 3]. In contrast, King plots in a succession of Ca⁺ isotopes were found to be linear within experimental uncertainties [4]. However, if the overall measurement uncertainty reaches 1 Hz level in the future—which is realistic—King-plot linearity in Ca⁺ might no longer hold. Our aim is to lay ground for an interpretation of Ca⁺ King plot nonlinearity. We calculate energy-level isotope shifts of 4s, $4p_{1/2}$, $4p_{3/2}$, $3d_{3/2}$ and $3d_{5/2}$ single-electron states of Ca⁺ for isotopes A = 40, 42, 44, 46, 48 using many-body perturbation theory. We include the leading first-order contributions—mass shift and field shift—as well as smaller corrections such as higher-order field shifts, quadratic mass shift, nuclear polarization contribution and the cross term between field and mass shifts. Additionally, we examine King-plot nonlinearities introduced by the higher-order isotope-shift corrections to the combinations of $3d_{3/2} \rightarrow 4s$, $3d_{5/2} \rightarrow 4s$, and $4p_{1/2} \rightarrow 4s$ transitions. Second-order mass shift and nuclear polarization correction are identified as the dominant sources of possible nonlinearity.

- [1] J. C. Berengut *et al.*, PRL **120** (2018) 091801.
- [2] I. Counts et al., PRL 125 (2020) 123002.
- [3] J. Hur et al., PRL 128 (2022) 163201.

^[4] C. Solaro et al., PRL 125 (2020) 123003.