High precision calculations for helium and helium-like ions

Vladimir A. Yerokhin^a, Vojtěch Patkóš^b, Krzysztof Pachucki^c

^a Max–Planck–Institut fúr Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany ^b Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic

^c Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland

We will present the current status of QED theory of the helium atom in comparison to precision experimental results. We observe perfect agreement for $2^3S - 2^3P$ transition using the newly obtained muonic helium nuclear charge radius. We also observe excellent agreement for 2^3S hyperfine splitting. However, we observe significant disagreements for 2^3S and 2^3P ionization energies and for the difference of nuclear charge radii obtained from isotope shifts.