Probing Nuclear Sizes with Precision Spectroscopy in Bosonic and Fermionic Helium

Yuri van der Werf

LaserLaB VU Amsterdam

FFK meeting Vienna, 2023
Precision measurements for fundamental physics

Fundamental Physics

Tabletop Experiments

- High precision measurements
- Bound-state QED (theory collaborators)

\[\text{He, He}^+, \text{H}_2, \text{HD, HT, HD}^+, \text{H}_2^+, \ldots \]

Simple, calculable, systems
Precision measurements for fundamental physics

Simple, calculable, systems

- H-atom: $1S \rightarrow 2S$ transition
 - $2S$ metastable level: narrow linewidth
 - $4.5 \cdot 10^{-15}$ precision \[1\]
 - Cornerstone for QED calculation

- Combined with other transitions
 - Proton charge radius r_p and R_∞
 - ‘proton radius puzzle’

\[1\] Matveev et al. *Phys. Rev. Lett.* 110, no. 23 (June 2013): 230801.
Precision measurements
For fundamental physics

- Next atom, He
- Two electrons:
 - Singlet/Triplet structure
- Two 2S metastable levels:
 - Narrow transition at 1557 nm
 - First measured in 2011 at VU (van Rooij et al.)
Precision measurements
For fundamental physics

- Next atom, He
- Two electrons:
 - Singlet/Triplet structure
- Two 2S metastable levels:
 - Narrow transition at 1557 nm
- \(2^3S_1\) state:
 - Laser cooling and trapping
 - Degree of control
 - Reduce Doppler
Precision measurements
For fundamental physics

- Next atom, He
- Two electrons:
 - Singlet/Triplet structure
- BUT: complicated QED theory from electron-electron terms
- SOLUTION: $^3\text{He}-^4\text{He}$ isotope shift
 - Most difficult terms drop out
 - Nuclear sizes: $\delta r^2 = r_3^2 - r_4^2$
The helium atom

• Measure isotope shift:
 • Electron-electron terms drop out
 • Finite nuclear size remains
 • Scattering data too inaccurate

• Approach:
 • Measure 3He-4He isotope shift
 • Extract differential charge radii $r_3^2 - r_4^2$ using QED theory
 • Compare with other measurements:
 Spectroscopic, scattering, μHe$^+$
 Consistency check
Quantum degenerate He

Cooling sequence:
- Magneto-optical trap: 500M @ 0.5 mK
- Doppler cooling in Magnetic Trap: 200M @ 130 μK
- Evaporative cooling: quantum degenerate gas ≤ 1 μK
- Transfer to Optical Dipole Trap (ODT)

Atom detection
- Microchannel plate
- 20 eV internal energy
- Time-of-flight fitting: N, μ, T

[Diagram of He* beam collimation, Magneto-Optical & Magnetic Trap, Zeeman Slower, Optical Dipole Trap, MCP detector]
Precision Spectroscopy

• Magic wavelength Optical Dipole Trap
 • ‘magic wavelength’ @ 320 nm
 • Same trap potential for 2^3S_1 and 2^1S_0
 • No ac-Stark shift
 • Homebuilt 2 W cw UV laser

Two ingredients for precision spectroscopy:

- Magic wavelength dipole trap
- Frequency metrology:
 - Cs clock frequency standard
 - Optical frequency comb
 - Ultra stable (< 2 Hz) reference laser
Precision spectroscopy

• Measure *unperturbed* $2^3S_1 \rightarrow 2^1S_0$ transition

• Systematics effects:
 • Spectroscopy Stark shift: extrapolate
 • Dipole trap Stark shift: magic λ
 • Zeeman shift: spin-stretched states
 • photon recoil: exactly known
 • Interactions: **mean-field shift**
Spectroscopy of a 4He BEC

- Dominated by collisions:
 - Penning ionization signal
 \[\text{He} (2^1S_0) + \text{He} (2^3S_1) \rightarrow \text{He} (1^1S_0) + \text{He}^+ + e^- \]
 - Cold-collision shift:
 \[\langle \Delta \nu \rangle \propto \frac{a_{ts} - a_{tt}}{a_{tt}} \mu \]

Data Fits:
- BEC
- Thermal
- Total

single shot TOF:
Spectroscopy of a 4He BEC

- Systematics analysis:
 - Spectroscopy laser ac-Stark
 - Dipole trap (residual) shift
 - $\lambda_m = 319.81592(15) \text{ nm}$
 - Cold-collision shift: $\langle \Delta \nu \rangle \propto \frac{a_{ts} - a_{tt}}{a_{tt}} \mu$
 - $a_{ts} = 82.5(5.2) \ a_0$
 - $2^3 S_1 \rightarrow 2^1 S_0$ transition:
 - $192\ 510\ 702\ 148.72(0.20) \ \text{kHz}$

Most accurate transition in helium (10^{-12})
Three benchmarks for the 4He atom

Bob Rengelink

Working with 3He

Production of a Degenerate Fermi Gas of 3He*
and investigation of the spectral line shape
Working with ^3He

- Low natural abundance
- Recycling system

<table>
<thead>
<tr>
<th></th>
<th>^3He</th>
<th>^4He</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic mass</td>
<td>3.016 amu</td>
<td>4.0026 amu</td>
</tr>
<tr>
<td>Natural abundance</td>
<td>0.00014 %</td>
<td>99.99986 %</td>
</tr>
<tr>
<td>Nuclear spin</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>Cost</td>
<td>$2000/L$ [1]</td>
<td>$0.07/L$ [2]</td>
</tr>
</tbody>
</table>

[2] Local party balloon store (2020)
Pauli principle: Ultracold Identical Fermions don’t collide!

- Sympathetic cooling with 4He
- Fermi-Dirac distribution: *Doppler broadening*
- No Penning ionisation signal: *Measure trap depletion*
- No collisional shift *
Working with 3He

- Sympathetic cooling with 4He
- Fermi-Dirac distribution: *Doppler broadening*
- No Penning ionisation signal: *Measure trap depletion*
- No collisional shift *
$2^3S_1 \rightarrow 2^1S_0$ spectroscopy

- Fermion line profile: Doppler broadening

\[S(\Delta) \propto \int \int \rho_g \delta(\omega - \omega_0) d^3\vec{r} d^3\vec{k} \]

Fermi-Dirac resonance

Juzeliūnas & Mašalas, *PRA* 63, 061602 (2001)

- Expect Doppler broadening: $FWHM \leftrightarrow T_F$

- But wait, reduced linewidth!

![Graph](image)
Understanding the spectral lineshape

\[S(\Delta) \propto \int \int \left[\rho_g - \rho_g (1 - \rho_g) \right] \delta(\omega - \omega_0) \, d^3\vec{r} \, d^3\vec{k} \]

Decay $2^1S_0 \to 1^1S_0$: $\tau = 20 \text{ ms}$

Stimulated emission

Excitation Blockade Resonance

Pauli-blocked in dense part of the gas
Testing the lineshape model

\[\tau = 20 \text{ ms} \]

\[|2^1S_0\rangle \rightarrow |4^1P_1\rangle \]

\[|2^3S_1\rangle \]

\[P_1 \]

\[\lambda = 396 \text{ nm} \]

\[r = 4 \text{ ns} \]

\[V(r) \]

\[r \]

\[\text{Nat. Comm. 13, 6479 (2022)} \]
Precision spectroscopy

• Measure *unperturbed* $2^3S_1 \rightarrow 2^1S_0$ energy difference

• Systematic effects:
 • Dipole trap Stark shift
 • Spectroscopy laser Stark shift
 • Zeeman shift
 • photon recoil
 • Lineshape Model ✓
Precision spectroscopy

\[\hbar \kappa \]

\[F = \frac{1}{2} \]

\[|2^1S_0, F = 1/2 \rangle \]

PRELIMINARY RESULT \(^3\)He \(2^3S_1 \rightarrow 2^1S_0 \) (2022):

\[f_0 = 192 \ 504 \ 914 \ 418.96(17) \text{ kHz} \]

\[\lambda_m = 319.830 \ 80(15) \text{ nm} \]
Nuclear Charge Radius Difference

Previous result
van Rooij et al.

Zheng et al. (\(^4\text{He}\))
+ Cancio Pastor et al. (\(^3\text{He}\))

Cancio Pastor et al.

Shiner et al.

data: [Phys. Rev. A 95, 062510 (2017)]

\[r^2(\text{\(^3\text{He}\)}) - r^2(\text{\(^4\text{He}\)}) \text{ (fm}^2\text{)} \]

PRELIMINARY RESULTS

\(2^3\text{S} \rightarrow 2^1\text{S}\)

\(1557 \text{ nm}\)

\(3^\text{He}\) DFG

\(4^\text{He}\) BEC

Trapped quantum gases

\(2^3\text{S} \rightarrow 2^3\text{P}\)

\(1083 \text{ nm}\)

Atomic beam

This work

\(^4\text{He} \text{ Nat Phys 14 (2018)}\)

+

\(^3\text{He} \text{ 2022 PRELIMINARY}\)
Nuclear Charge Radius Difference

Previous Amsterdam result
(2011)

This work

4.4σ

4He Nat Phys 14 (2018)
+ 3He 2022 PRELIMINARY

Data: [Phys. Rev. A 95, 062510 (2017)]

Zheng et al. (4He)
+ Cancio Pastor et al. (3He)

Cancio Pastor et al.

Shiner et al.

2^3S → 2^1S

Trapped quantum gases

2^3S → 2^3P

Atomic beam

PRELIMINARY RESULTS
Nuclear Charge Radius Difference

Previous Amsterdam result (2011)

4.4σ

Previous result van Rooij et al.

Zheng et al. (4He)
+ Cancio Pastor et al. (3He)

Prof. Shui-ming Hu talk yesterday!

Cancio Pastor et al.

Shiner et al.

$^{4}\text{He} \text{Nat Phys 14 (2018)}$
+
$^{3}\text{He} \text{2022 PRELIMINARY}$

$2^{3}\text{S} \rightarrow 2^{1}\text{S}$

$2^{3}\text{S} \rightarrow 2^{3}\text{P}$

Trapped quantum gases

PRELIMINARY RESULTS

data: [Phys. Rev. A 95, 062510 (2017)]

$r^2(3\text{He}) - r^2(4\text{He})$ (fm2)

1.02 1.03 1.04 1.05 1.06 1.07 1.08

LaserLab AMSTERDAM
7 kHz (4.4 σ) deviation?

Previous Result: non-magic wavelength

- Fermi-Dirac: AC Stark shift asymmetry
- Not resolved within laser bandwidth
- **New setup:**
 - magic wavelength: *no AC Stark from trap*
 - improved laser lock: *resolve quantum effects*

Diagram:

- a) Schematic of energy levels.
- b) Simulated line profile with transition frequency.
- c) Graph showing transition frequency with corrected thermal broadening for large Fermi gases.

- 192 504 914 417.2(2.0) kHz

Correction based on thermal broadening for large Fermi gases
Nuclear Charge Radius Difference

\[\sigma_{\text{exp}} > \Gamma = 8 \text{ Hz} \]

\[\sigma_{\text{exp}} \ll \Gamma = 1.6 \text{ MHz} \]

\[2^3S \rightarrow 2^1S \]

\[2^3S \rightarrow 2^3P \]

Trapped quantum gases

\[\sigma_{\text{exp}} > \Gamma = 8 \text{ Hz} \]

\[\sigma_{\text{exp}} \ll \Gamma = 1.6 \text{ MHz} \]

This work

van Rooij et al. re-evaluation

Previous result
van Rooij et al.

Zheng et al.\((^4\text{He})\)
+ Cancio Pastor et al. \((^3\text{He})\)

Cancio Pastor et al.

Shiner et al.

data: [Phys. Rev. A 95, 062510 (2017)]
Electrons vs. Muons

- He nuclear charge radii from μHe^+ spectroscopy
 - ^4He: 1.67824(83) fm [Krauth et al. Nature 589, p. 527–531 (2021)]
 - Fresh off the press: ^3He 1.97007(94) fm [https://arxiv.org/abs/2305.11679]
Electrons vs. Muons

- He nuclear charge radii from μHe^+ spectroscopy
 - ^4He: 1.67824(83) fm [Krauth et al. Nature 589, p. 527–531 (2021)]
 - Fresh off the press: ^3He 1.97007(94) fm

PRELIMINARY RESULTS

- van Rooij et al. (2011) $^2S \rightarrow ^2P$
- Zheng2017(^4He) + CP2021(^4He) $^2S \rightarrow ^2P$
- Cancio Pastor et al. (2012) $^2S \rightarrow ^2P$
- Shiner et al. (1995) $^2S \rightarrow ^2P$

μ He$^+$ (arXiv 2023) $^2S \rightarrow ^2P$

This work (Prel.) $^2S \rightarrow ^2P$

*Also fresh: Preliminary Hefei 2023
Electrons vs. Muons

- 3.6σ from μHe^+
- $2\sigma - 4\sigma$ from $2^3S \rightarrow 2^3P$
- Hefei ^3He?
- 1.9 kHz shift for 1σ agreement with muonic

Discrepancies:
- *New physics? Well...............*
- Very different systematics
- Theory: triplet vs. singlet
- Muonic: higher-order QED
In conclusion

• Fundamental physics with ultracold helium:
 • Precision spectroscopy: narrow transition
 • Nuclear charge radii → most accurate $r_3^2 - r_4^2$
 • QED benchmark
 • Comparison with other works, exciting times:
 \textit{Other spectroscopy, scattering, muonic systems}

• More than just the transition frequency:
 • magic wavelengths: benchmarks for QED
 • 4He BEC: insight into collisions, mean-field shift, scattering length α_{ts}
 • 3He Fermi gas: Observation of unexpected Pauli Blockade effects

• Higher precision? $\Gamma = 8$ Hz (experimentally challenging)
• Other measurements in helium?
Thanks for your attention!

He* team:
- Raphael Jannin
- Kees Steinebach
- Yuri van der Werf
- Rick Bethlehem
- Kjeld Eikema
- Bob Rengelink

Technical support:
- Rob Kortekaas
- Lex van der Gracht

Funding & facilities:
Thanks for your attention!

Questions?

Email: y.vander.werf@vu.nl
• **Systematics analysis: Zeeman shift**

\[|2^1S_0, F = 1/2\rangle \quad \text{and} \quad |2^3S_1, F = 3/2\rangle \]
Systematic analysis

- 2nd order Zeeman shift:

Using the Breit-Rabi formula with $J \leftrightarrow I$

No coupling to $F = 1/2$ from spin-stretched $m_F = \pm 3/2$

2nd order Zeeman from coupling to 2^3P_J, same as ^4He: $< 4 \text{ mHz/G}^2$
Reduced linewidth

Tails of spectrum: reduced loss

Fermi-Dirac state occupation

Center of spectrum: high loss

We measure the remaining He*
Systematic analysis

- Cold collision shift?

IDENTICAL cold* fermions don’t collide

\[
|g_1\rangle \rightarrow \alpha_1 |g_1\rangle + \beta_1 |e_1\rangle \\
|g_2\rangle \rightarrow \alpha_2 |g_2\rangle + \beta_2 |e_2\rangle
\]

\[
|S\rangle = \frac{(\alpha_1 \beta_2 - \alpha_2 \beta_1)}{\sqrt{2}} \cdot (|ge\rangle - |eg\rangle)
\]

\[
\langle S|S\rangle \equiv G_{ge}^{(2)}
\]

\[
\Delta_{mfs} = \frac{\hbar a_{ge}}{m} \rho_g (r) \cdot G_{ge}^{(2)} < 2\pi \times 1 \text{ Hz}
\]

*p-wave frozen out \(T < 500 \text{ mK} \)
Frequency metrology

Hz laser drift

Centralized building HVAC control!

Correction to the real SI second: local Cs clock deviation from GPS

$$\Delta f = 55 \text{ Hz}$$
Finding the magic wavelength

• Measurements at different wavelengths
• Measure strength of the a.c. Stark shift
Thermodynamic shift: @320nm

\[\langle I_{320} \rangle = \Delta f_{\text{Stark}}/\alpha \approx 5.5 \times 10^7 \text{ Wm}^{-2} \]

\[I_{\text{peak}} \approx 10^8 \text{ Wm}^{-2} \]

\[|2^1S_0\rangle \]

Error in a.c. Stark extrapolation?

Average trap intensity

* @ 1W UV power
Electrons vs Muons?

Amsterdam 2022
PRELIMINARY

Cancio Pastor et al.

• Vastly different systems
• Vastly different theory
• Consistency check
• Probe nuclear sizes
• QED test

Shiner et al.

\[\sigma_{exp} > \Gamma = 8 \text{ Hz} \]

\[\sigma_{exp} \ll \Gamma = 1.6 \text{ MHz} \]

\[r^2(3\text{He}) - r^2(4\text{He}) (\text{fm}^2) \]

PRELIMINARY RESULTS
4.4 σ deviation?

2011 result:
1557 nm dipole trap + direct frequency comb lock
- Fermi-Dirac: AC Stark shift asymmetry
- Not resolved within laser bandwidth
- Verified now with new spectroscopy laser

2022 result:
magic wavelength trap + ultrastable reference laser
- Fermi-Dirac: Doppler + Pauli blocking
- No trap AC Stark \rightarrow Fully symmetric
- Quantum effects resolved (2018: 4He meanfield)
Testing the model

• Enhanced ground state decay through 4^1P_1 state

 Eliminate the stimulated emission channel

 Lift Pauli Blockade effect
Testing the model

- Enhanced ground state decay through 4^1P_1 state

$\tau \approx 20 \text{ ms}$

$\tau \sim 26 \text{ ns}$

$T \approx 95 \text{ nK}$

$T/T_F \approx 0.35 \sim 0.55$
Understanding the spectral lineshape

- Trapped fermionic 3He: Fermi-Dirac distribution
 - Distribution over motional states in the trap
 - Laser absorption Doppler broadened ($T_F \sim 1 \, \mu K$)
Before PhD

• Master thesis work at Eindhoven University of Technology

• 85Rb MOT
• Rydberg excitation ($780 + 480$)
• SLM: shaped excitation volume
Before PhD

• Rydberg spectra:
 • Lineshape mediated by interactions
 • Rydberg facilitation
 • Spatial resolution obscured by ion repulsion