Precision spectroscopy of transitions from the metastable $2{ }^{3} \mathbf{S}_{1}$ state of ${ }^{4}$ He to high- n p Rydberg states

Gloria Clausen a, Simon Scheidegger ${ }^{a}$, Josef Anton Agner ${ }^{a}$, Hansjürg Schmutz ${ }^{a}$, Frédéric Merkt ${ }^{a}$
${ }^{a}$ Laboratory of Physical Chemistry, ETH Zurich

The metastable $\mathrm{He}\left((1 \mathrm{~s})^{1}(2 \mathrm{~s})^{1}\right)$ atom in its singlet $\left({ }^{1} \mathrm{~S}\right)$ or triplet $\left({ }^{3} \mathrm{~S}\right)$ states is an ideal system to perform tests of ab-initio calculations of two-electron systems that include quantum-electrodynamics and nuclear finite-size effects. The recent determination of the ionization energy of the metastable $2{ }^{1} \mathrm{~S}$ state of ${ }^{4} \mathrm{He}$ [1] confirmed a discrepancy between the latest theoretical values of the Lamb shifts in low-lying electronic states of triplet helium [2] and the measured $3^{3} \mathrm{D} \leftarrow 2{ }^{3} \mathrm{~S}$ [3] and $3^{3} \mathrm{D} \leftarrow 2{ }^{3} \mathrm{P}$ [4] transition frequencies and could not be resolved in the latest calculations [5, 6]. Currently, we focus on the development of a new experimental method for the determination of the ionization energy of the $2{ }^{3} \mathrm{~S}$ state of ${ }^{4} \mathrm{He}$ via the measurement of transitions from the $2{ }^{3} \mathrm{~S}_{1}$ state to n p Rydberg states with unprecedented accuracy. Extrapolation of the $n \mathrm{p}$ series yields the ionization energy with sub- MHz accuracy.
We present the progress in the development of our experimental setup, which features a Zeeman decelerator and transverse laser cooling and involves (i) the preparation of a cold, supersonic expansion of helium atoms in the $2{ }^{3} \mathrm{~S}$ state, (ii) the setup and characterization of a laser system for driving the transitions to the $n \mathrm{p}$ Rydberg states and (iii) the development of a subDoppler, background-free detection method. Further, we will provide example spectra of selected $n \mathbf{p}^{3} \mathrm{P}_{J} \leftarrow 2{ }^{3} \mathrm{~S}_{1}$ measurements with a prediction of uncertainties for our final measurement campaign.

Figure 1: Level diagram of He singlet states (left) and triplet states (right). Comparison of experimentally [1] and theoretically [2] determined ionization energies shown as green and red vertical arrows, where green indicates agreement and red indicates discrepancies.
[1] G. Clausen et al., Phys. Rev. Lett. 127, 093001 (2021).
[2] V. Patkóš et al., Phys. Rev. A. 103, 042809 (2021).
[3] C. Dorrer et al., Phys. Rev. Lett. 78, 3658 (1997).
[4] P.-L. Luo et al., Phys. Rev. A. 94, 062507 (2016).
[5] V. A. Yerokhin et al., Eur. Phys. J. D. 76, 142 (2022).
[6] V. A. Yerokhin et al., Phys. Rev. A. 107, 012810 (2023).

