Precision spectroscopy of transitions from the metastable 2 3S_1 state of 4He to high-np Rydberg states

 $\underline{{\sf Gloria\ Clausen}}^a,$ Simon Scheidegger a , Josef Anton Agner a , Hansjürg Schmutz a, Frédéric Merkt a

^a Laboratory of Physical Chemistry, ETH Zurich

The metastable He $((1s)^1(2s)^1)$ atom in its singlet (^1S) or triplet (^3S) states is an ideal system to perform tests of ab-initio calculations of two-electron systems that include quantum-electrodynamics and nuclear finite-size effects. The recent determination of the ionization energy of the metastable 2^1S state of 4He [1] confirmed a discrepancy between the latest theoretical values of the Lamb shifts in low-lying electronic states of triplet helium [2] and the measured $3^3D \leftarrow 2^3S$ [3] and $3^3D \leftarrow 2^3P$ [4] transition frequencies and could not be resolved in the latest calculations [5, 6]. Currently, we focus on the development of a new experimental method for the determination of the ionization energy of the 2^3S state of 4He via the measurement of transitions from the 2^3S_1 state to np Rydberg states with unprecedented accuracy. Extrapolation of the np series yields the ionization energy with sub-MHz accuracy.

We present the progress in the development of our experimental setup, which features a Zeeman decelerator and transverse laser cooling and involves (i) the preparation of a cold, supersonic expansion of helium atoms in the 2^3S state, (ii) the setup and characterization of a laser system for driving the transitions to the np Rydberg states and (iii) the development of a sub-Doppler, background-free detection method. Further, we will provide example spectra of selected np $^3P_J \leftarrow 2^3S_1$ measurements with a prediction of uncertainties for our final measurement campaign.

Figure 1: Level diagram of He singlet states (left) and triplet states (right). Comparison of experimentally [1] and theoretically [2] determined ionization energies shown as green and red vertical arrows, where green indicates agreement and red indicates discrepancies.

^[1] G. Clausen et al., Phys. Rev. Lett. 127, 093001 (2021).

^[2] V. Patkóš et al., Phys. Rev. A. 103, 042809 (2021).

^[3] C. Dorrer et al., Phys. Rev. Lett. 78, 3658 (1997).

^[4] P.-L. Luo et al., Phys. Rev. A. 94, 062507 (2016).

^[5] V. A. Yerokhin et al., Eur. Phys. J. D. 76, 142 (2022).

^[6] V. A. Yerokhin et al., Phys. Rev. A. 107, 012810 (2023).