Recoil and Radiative-Recoil Corrections in Muonium

<u>Gregory S. Adkins^a</u>, Jonathan Gomprecht^a, Yanxi Li^a, and Evan Shinn^a ^a Franklin & Marshall College, Lancaster, Pennsylvania

Muonium, the $e^-\mu^+$ bound system, is presently the subject of intense experimental activity. The MUSEUM collaboration at J-PARC is mounting an experiment to measure the muonium ground state hyperfine splitting with an uncertainty goal of 5 Hz (1.2 ppb) [1]. The MuMASS collaboration at PSI is working on new measurements of the 1S-2S interval and the n = 2 Lamb shift. The 1S-2S experiment has a final uncertainty goal of 10 kHz (4 ppt) [2, 3]. For the Lamb shift, a new measurement has already reduced the uncertainty by an order of magnitude compared to previous measurements [4] with prospects for significant additional improvement. The leading uncertainties in the QED calculations for these intervals are due to uncalculated recoil and radiative-recoil corrections [3, 5, 6]. It is important to reduce these theoretical uncertainties in order to make the best use of improved experimental results.

In this talk I will report on new results for the recoil and radiative-recoil corrections to muonium energy levels at orders $(Z\alpha)^6$ and $\alpha(Z\alpha)^5$, respectively [7]. These results are exact in the particle masses, eliminating the need for an expansion in the small mass ratio m_e/m_{μ} . The calculations of the required "hard" integrals (the ones involving relativistic momenta) were done using the integration-by-parts identities in terms of a small set of master integrals, which were evaluated using the method of differential equations [8]. Calculations involving the "soft" (non-relativistic) scale were performed using NRQED. Progress on using the same methods for the calculation of recoil and radiative-recoil contributions at orders $(Z\alpha)^7$, $\alpha(Z\alpha)^6$, and $\alpha^2(Z\alpha)^5$ will be discussed.

^[1] S. Kanda et al., Phys. Lett. B 815 (2021) 136154.

^[2] B. Ohayon, Z. Burkley, and P. Crivelli, SciPost Phys. Proc. 5 (2021) 029.

^[3] I. Cortinovis et al., arXiv:2301.12883 [physics.atom-ph] (2023).

^[4] B. Ohayon et al., Phys. Rev. Lett. 128 (2022) 011802.

^[5] E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 93 (2021) 025010.

^[6] G. Janka, B. Ohayon, and P. Crivelli, EPJ Web of Conferences 262 (2022) 01001.

^[7] G. S. Adkins, J. Gomprecht, Y. Li, and E. Shinn, Phys. Rev. Lett. 130 (2023) 023004.

^[8] J. Blümlein and C. Schneider, arXiv:2203.13015 [hep-ph] (2022)