

Nuclear Radii Constrain the Isospin-Breaking Corrections to V_{ud}

Misha Gorshteyn

Johannes Gutenberg-Universität Mainz

Based on:

Chien-Yeah Seng, MG

2208.03037

2304.03800

2212.02681

2211.10214

With Chien-Yeah Seng

Further collaborations:

Petr Navratil

Michael Gennari

Mehdi Drissi

Saori Pastore

Garrett King

Gaute Hagen

Sonia Bacca

Weiguang Jiang

Universality, Completeness & CKM unitarity

Fermi constant from muon lifetime: $G_F = G_\mu = 1.1663788(7) \times 10^{-5} GeV^{-2}$

$$\mathcal{L}_{e\mu} = -2\sqrt{2}G_{\mu}\bar{e}\gamma_{\alpha}\nu_{eL}\cdot\nu_{\mu L}^{-}\gamma^{\alpha}\mu + \text{h.c.}$$

SM: same W-coupling to LH leptons and quarks, but strength shared between 3 generations

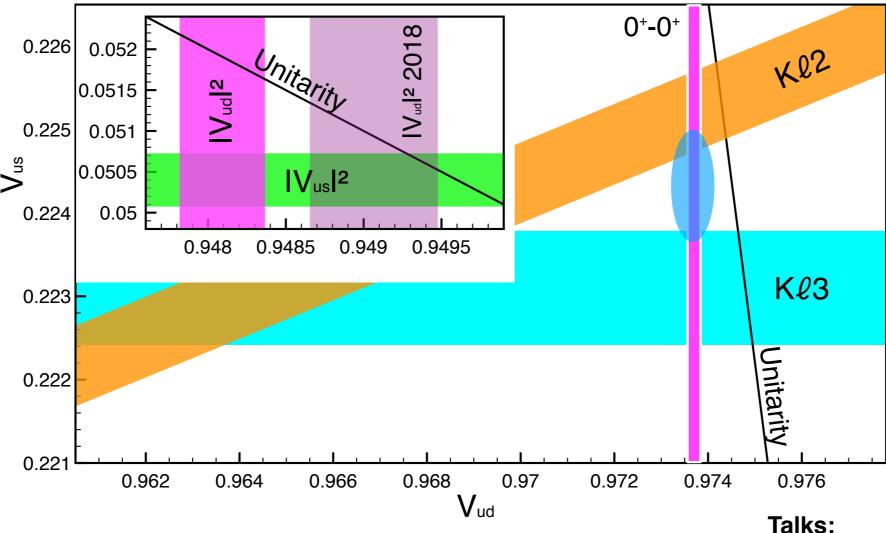
$$\mathcal{L}_{eq} = -\sqrt{2}G_{\mu}\bar{e}\gamma_{\mu}\nu_{eL}\cdot\bar{U}_{i}\gamma^{\mu}(1-\gamma_{5})V_{ij}D_{j} + \text{h.c.}$$

$$U_{i} = (u,c,t)^{T}$$

$$D_{j} = (d,s,b)^{T}$$

Universality + Completeness of SM (only 3 gen's) —> unitary CKM matrix $V^{\dagger}V=1$ Top-row unitarity condition: $|V_{ud}|^2+|V_{us}|^2+|V_{ub}|^2=1$

At low energy accessible via β -decas of hadrons, e.g. $n o pear{
u}$


$$\mathcal{L}_{e\nu pn} = -\sqrt{2}G_{\mu}V_{ud}\bar{e}\gamma_{\mu}\nu_L\cdot\bar{p}\gamma^{\mu}(g_V^{pn}-g_A^{pn}\gamma_5)n + \text{h.c.}$$

Conserved vector current: $g_V^{pn} = 1 + O((m_d - m_u)^2)$ but $g_A^{ud} = 1 \rightarrow g_A^{pn} \approx 1.276$

Precise measurements of g_V —> precision tests of EW sector of SM (currently 0.02%) Get rid of g_A —> superallowed nuclear decays between states $J^P=0^+$

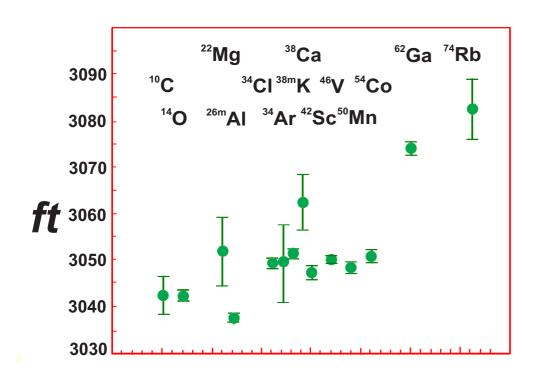
Top-row CKM unitarity deficit

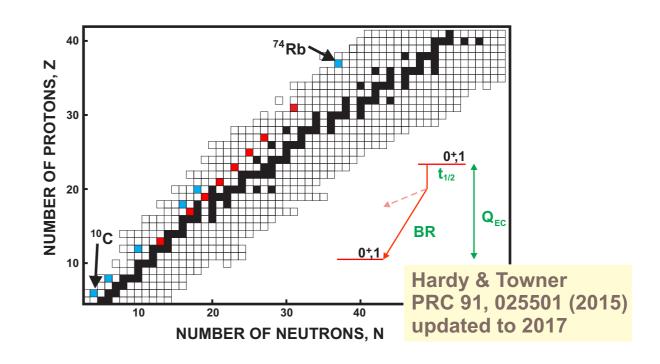
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9985(6)_{V_{ud}}(4)_{V_{us}}$$

 $\sim 0.95 \sim 0.05 \sim 10^{-5}$

Neutron decay by Hartmut Abele V_{ub}, V_{cb} by Christoph Schwanda

Inconsistencies between measurements of V_{ud} and V_{us} and SM predictions Most precise V_{ud} from superallowed nuclear decays


Precise V_{ud} from superallowed decays


Superallowed 0+-0+ nuclear decays:

- only conserved vector current (unlike the neutron decay and other mirror decays)
- many decays (unlike pion decay)
- all decay rates should be the same modulo phase space

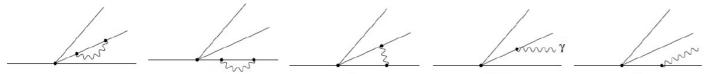
Experiment: \mathbf{f} - phase space (Q value) and \mathbf{t} - partial half-life ($t_{1/2}$, branching ratio)

- 8 cases with ft-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.
- **◆ ~220** individual measurements with compatible precision

ft values: same within ~2% but not exactly!

Reason: SU(2) slightly broken

- a. RC (e.m. interaction does not conserve isospin)
- b. Nuclear WF are not SU(2) symmetric(proton and neutron distribution not the same)

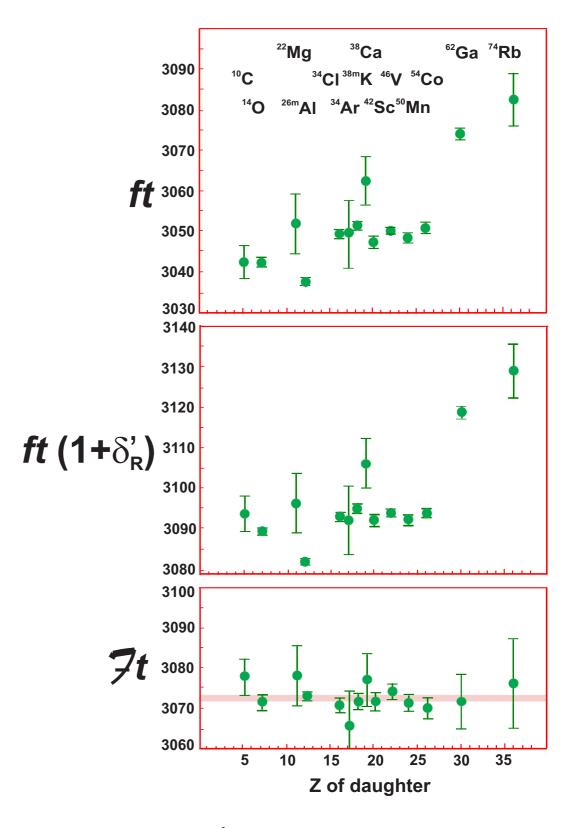

Precise V_{ud} from superallowed decays

Modified ft-values to include these effects

$$\mathcal{F}t = ft(1 + \delta_R')[1 - (\delta_C - \delta_{NS})]$$

$$|V_{ud}|^2 = \frac{2984.432(3)}{\mathcal{F}t(1+\Delta_R^V)}$$

 δ_R' - "outer" correction (depends on e-energy) - QED



 δ_C - SU(2) breaking in the nuclear matrix elements

 $\delta_{\!N\!S}$ - RC depending on the nuclear structure

Average of 14 decays - 0.02%

$$\overline{\mathcal{F}t} = 3072.1 \pm 0.7$$

Hardy, Towner 1973 - 2020

Isospin symmetry breaking in superallowed β -decay

Tree-level Fermi matrix element

$$M_F = \langle f | \tau^+ | i \rangle$$

 τ^+ — Isospin operator $|i\rangle$, $|f\rangle$ — members of T=1 isotriplet

If isospin symmetry were exact, $M_F \rightarrow M_0 = \sqrt{2}$

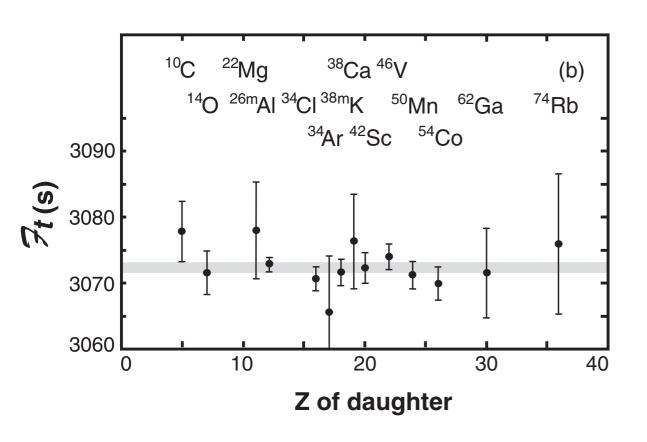
Isospin symmetry is broken in nuclear states (e.g. Coulomb, nucleon mass difference, ...)

In presence of isospin symmetry breaking (ISB): $|M_F|^2 = |M_0|^2 (1 - \delta_C)$

ISB correction is crucial for V_{ud} extraction

HT: shell model with *phenomenological* Woods-Saxon potential locally adjusted to:

- Masses of the isotriplet T=1, 0+ (IMME)
- Neutron and proton separation energies
- Known proton radii of stable isotopes

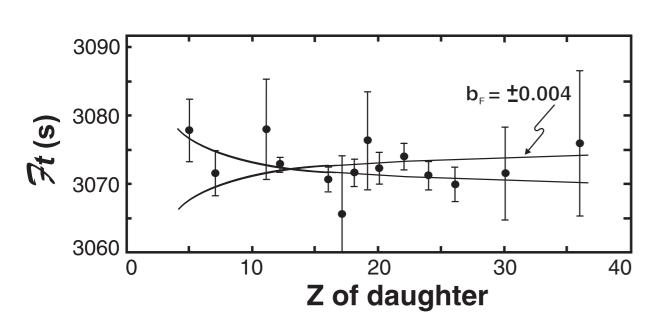

TABLE X. Corrections δ'_R , δ_{NS} , and δ_C that are applied to experimental ft values to obtain $\mathcal{F}t$ values.

Parent	δ_R'	$\delta_{ m NS}$	δ_{C1}	δ_{C2}	δ_C
nucleus	(%)	(%)	(%)	(%)	(%)
$\overline{T_z = -1}$					
¹⁰ C	1.679	-0.345(35)	0.010(10)	0.165(15)	0.175(18)
¹⁴ O	1.543	-0.245(50)	0.055(20)	0.275(15)	0.330(25)
¹⁸ Ne	1.506	-0.290(35)	0.155(30)	0.405(25)	0.560(39)
22 Mg	1.466	-0.225(20)	0.010(10)	0.370(20)	0.380(22)
²⁶ Si	1.439	-0.215(20)	0.030(10)	0.405(25)	0.435(27)
30 S	1.423	-0.185(15)	0.155(20)	0.700(20)	0.855(28)
^{34}Ar	1.412	-0.180(15)	0.030(10)	0.665(55)	0.695(56)
³⁸ Ca	1.414	-0.175(15)	0.020(10)	0.745(70)	0.765(71)
⁴² Ti	1.427	-0.235(20)	0.105(20)	0.835(75)	0.940(78)
$T_z = 0$, ,	, ,	` ,	, ,
26m Al	1.478	0.005(20)	0.030(10)	0.280(15)	0.310(18)
³⁴ Cl	1.443	-0.085(15)	0.100(10)	0.550(45)	0.650(46)
38m K	1.440	-0.100(15)	0.105(20)	0.565(50)	0.670(54)
42 Sc	1.453	0.035(20)	0.020(10)	0.645(55)	0.665(56)
^{46}V	1.445	-0.035(10)	0.075(30)	0.545(55)	0.620(63)
50 Mn	1.444	-0.040(10)	0.035(20)	0.610(50)	0.645(54)
⁵⁴ Co	1.443	-0.035(10)	0.050(30)	0.720(60)	0.770(67)
⁶² Ga	1.459	-0.045(20)	0.275(55)	1.20(20)	1.48(21)
⁶⁶ As	1.468	-0.060(20)	0.195(45)	1.35(40)	1.55(40)
70 Br	1.486	-0.085(25)	0.445(40)	1.25(25)	1.70(25)
⁷⁴ Rb	1.499	-0.075(30)	0.115(60)	1.50(26)	1.62(27)

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

$$\delta_C \sim 0.17\% - 1.6\%!$$

ISB vs. scalar interactions?


Once all corrections are included:

CVC —> Ft constant

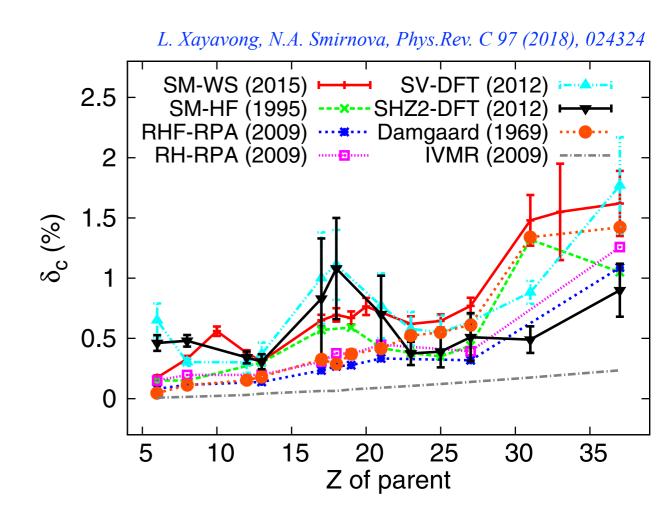
 δ_C particularly important for alignment!

Fit to 14 transitions:

Ft constant within 0.02% if using SM-WS

If BSM scalar currents present: "Fierz interference" $b_{\!F}$

$$\mathcal{F}t^{SM} \to \mathcal{F}t^{SM} \left(1 + b_F \frac{m_e}{\langle E_e \rangle}\right)$$


 $Q_{EC} \uparrow$ with Z —> effect of $b_F \downarrow$ with Z Introduces nonlinearity in the Ft plot

$$b_F = -0.0028(26)$$
 ~ consistent with 0

Nuclear model comparison for δ_C

J. Hardy, I. Towner, Phys. Rev. C 91 (2014), 025501

				RPA			
	SM-WS	SM-HF	PKO1	DD-ME2	PC-F1	IVMR ^a	DFT
$\overline{T_z = -1}$							
10 C	0.175	0.225	0.082	0.150	0.109	0.147	0.650
¹⁴ O	0.330	0.310	0.114	0.197	0.150		0.303
22 Mg	0.380	0.260					0.301
^{34}Ar	0.695	0.540	0.268	0.376	0.379		
³⁸ Ca	0.765	0.620	0.313	0.441	0.347		
$T_z = 0$							
26m Al	0.310	0.440	0.139	0.198	0.159		0.370
³⁴ Cl	0.650	0.695	0.234	0.307	0.316		
38m K	0.670	0.745	0.278	0.371	0.294	0.434	
42 Sc	0.665	0.640	0.333	0.448	0.345		0.770
^{46}V	0.620	0.600					0.580
⁵⁰ Mn	0.645	0.610					0.550
⁵⁴ Co	0.770	0.685	0.319	0.393	0.339		0.638
⁶² Ga	1.475	1.205					0.882
⁷⁴ Rb	1.615	1.405	1.088	1.258	0.668		1.770
χ^2/ν	1.4	6.4	4.9	3.7	6.1		4.3 ^b

HT: χ^2 as criterion to prefer SM-WS; V_{ud} and limits on BSM strongly depend on nuclear model

Nuclear community embarked on ab-initio δ_C calculations (NCSM, GFMC, CC, IMSRG) Especially interesting for light nuclei accessible to different techniques!

Phenomenological constraints on δ_C ?

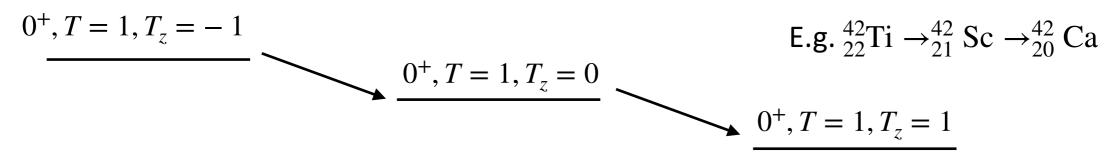
Idea: δ_C dominated by Coulomb repulsion between protons (hence C)

Coulomb interaction generates both δ_C and ISB combinations of nuclear radii

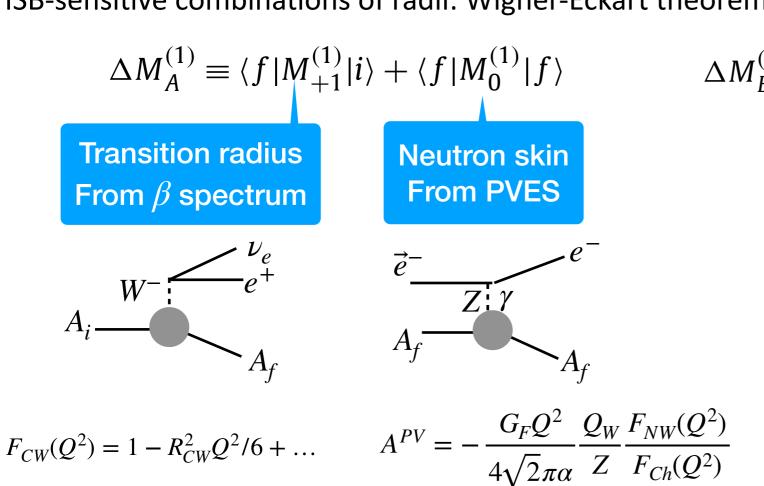
Auerbach 0811.4742; 2101.06199; Seng, MG 2208.03037; 2304.03800; 2212.02681

Nuclear Hamiltonian: $H=H_0+V_{\rm ISB}\approx H_0+V_C$

Coulomb potential for uniformly charged sphere

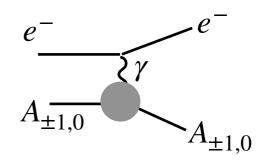

$$V_C \approx -\frac{Ze^2}{4\pi R_C^3} \sum_{i=1}^A \left(\frac{1}{2}r_i^2 - \frac{3}{2}R_C^2\right) \left(\frac{1}{2} - \hat{T}_Z(i)\right)$$

ISB due to IV monopole,
$$V_{\rm ISB} pprox \frac{Ze^2}{8\pi R^3} \sum_i r_i^2 \hat{T}_z(i) = \frac{Ze^2}{8\pi R^3} \hat{M}_0^{(1)}$$


Same operator generates nuclear radii

$$R_{p/n,\phi} = \sqrt{\frac{1}{X} \langle \phi | \sum_{i=1}^{A} r_i^2 \left(\frac{1}{2} \mp \hat{T}_z(i) \right) | \phi \rangle}$$

Phenomenological constraints on δ_C ?



ISB-sensitive combinations of radii: Wigner-Eckart theorem

$$\Delta M_B^{(1)} \equiv \frac{1}{2} \left(Z_1 R_{p,1}^2 + Z_{-1} R_{p,-1}^2 \right) - Z_0 R_{p,0}^2$$

Charge radii from atomic spectra and electron scattering

$$F_{Ch}(Q^2) = 1 - R_{Ch}^2 Q^2 / 6 + \dots$$

Since N \neq Z for $T_z=\pm 1$ factors $Z_{\pm 1,0}$ remove the symmetry energy to isolate ISB (Usually PVES —> neutron skins —> symmetry energy —> nuclear EOS —> nuclear astrophysics)

Electroweak radii constrain ISB in superallowed β -decay

Employ the correct isospin formalism by Schwenk, Miller 0805.0603; 0910.2790

 δ_C and radii expressed via the same set of matrix elements

$$\delta_{C} = \frac{1}{3} \sum_{a} \frac{|\langle a; 0 || V || g; 1 \rangle|^{2}}{(E_{a,0} - E_{g,1})^{2}} + \frac{1}{2} \sum_{a \neq g} \frac{|\langle a; 1 || V || g; 1 \rangle|^{2}}{(E_{a,1} - E_{g,1})^{2}} - \frac{5}{6} \sum_{a} \frac{|\langle a; 2 || V || g; 1 \rangle|^{2}}{(E_{a,2} - E_{g,1})^{2}} + \mathcal{O}(V^{3})$$

$$\Delta M_{A}^{(1)} = \frac{1}{3} \Gamma_{0} + \frac{1}{2} \Gamma_{1} + \frac{7}{6} \Gamma_{2}$$

$$\Delta M_{B}^{(1)} = \frac{2}{3} \Gamma_{0} - \Gamma_{1} + \frac{1}{3} \Gamma_{2}$$

$$\Gamma_{T} = -\sum_{a} \frac{|\langle a; 2 || V || g; 1 \rangle|^{2}}{E_{a,T} - E_{g,1}}$$

Different scaling with ISB: $\delta_C \sim \mathrm{ISB^2}, \ \Delta M_A^{(1)} \sim \mathrm{ISB^1}, \ \Delta M_B^{(1)} \sim \mathrm{ISB^3}$

Compare to IMME (masses across an isomultiplet)

$$\begin{split} E(a,T,T_z) &= \mathtt{a}(a,T) + \mathtt{b}(a,T)T_z + \mathtt{c}(a,T)T_z^2 \\ \mathtt{b} &\sim \langle a;T,T_z|V^{(1)}|a;T,T_z\rangle \ , \ \mathtt{c} \sim \langle a;T,T_z|V^{(2)}|a;T,T_z\rangle \end{split}$$

Unlike δ_C , $\Delta M_{A,B}^{(1)}$ — IMME only depends on diagonal m.e. — indirect constraint

Electroweak radii constrain ISB in superallowed β -decay

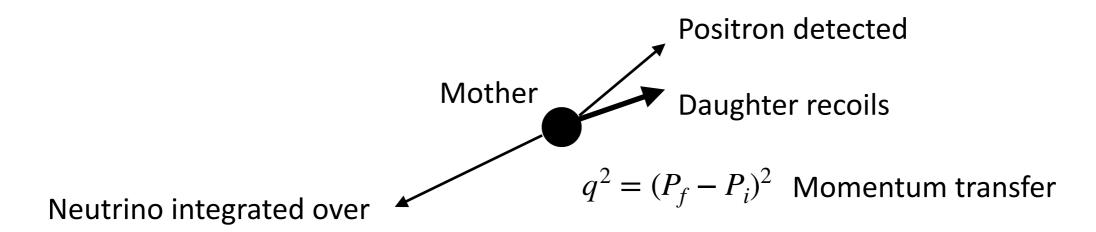
For numerical analysis: lowest isovector monopole resonance dominates One ISB matrix element, one energy splitting

Model for $\delta_C o$ prediction for $\Delta M_{A,B}^{(1)}$

Transitions	δ _C (%)					$\Delta M_A^{(1)} \text{ (fm}^2)$				$\Delta M_B^{(1)}$ (fm ²)					
	WS	DFT	HF	RPA	Micro	WS	DFT	HF	RPA	Micro	WS	DFT	HF	RPA	Micro
26m Al \rightarrow 26 Mg	0.310	0.329	0.30	0.139	0.08	-2.2	-2.3	-2.1	-1.0	-0.6	-0.12	-0.12	-0.11	-0.05	-0.03
$^{34}\text{Cl} \rightarrow ^{34}\text{S}$	0.613	0.75	0.57	0.234	0.13	-5.0	-6.1	-4.6	-1.9	-1.0	-0.17	-0.21	-0.16	-0.06	-0.04
38m K \rightarrow 38 Ar	0.628	1.7	0.59	0.278	0.15	-5.4	-14.6	-5.1	-2.4	-1.3	-0.15	-0.42	-0.15	-0.07	-0.04
42 Sc \rightarrow 42 Ca	0.690	0.77	0.42	0.333	0.18	-6.2	-6.9	-3.8	-3.0	-1.6	-0.15	-0.17	-0.09	-0.07	-0.04
$^{46}V \rightarrow ^{46}Ti$	0.620	0.563	0.38	1	0.21	-5.8	-5.3	-3.6	1	-2.0	-0.12	-0.11	-0.08	1	-0.04
50 Mn \rightarrow 50 Cr	0.660	0.476	0.35	1	0.24	-6.4	-4.6	-3.4	1	-2.4	-0.12	-0.09	-0.06	1	-0.04
54 Co \rightarrow 54 Fe	0.770	0.586	0.44	0.319	0.28	-7.8	-5.9	-4.4	-3.2	-2.8	-0.13	-0.10	-0.07	-0.05	-0.05

Can discriminate models if independent information on nuclear radii is available ΔM_A from measured radii —> test models for δ_C

Charge radii across superallowed isotriplets?


Some are known (but difficult — unstable isotopes, some g.s. are not 0^+)

Typically, precision is not enough to make a quantitative statement — need to improve!

Charge radii + isospin symmetry -> nuclear recoil

We said that ft-values are experimental — but not quite!

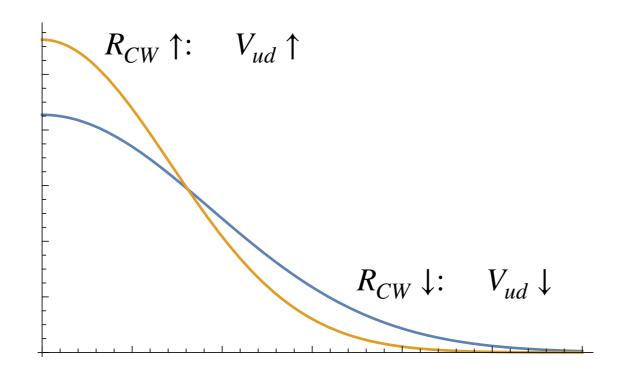
A few theory ingredients are absorbed: Coulomb distortions + Nuclear form factor

Integrating over neutrino momenta = integrating over q^2

$$ft \equiv ft(q^2 = 0) \int_{\min}^{\max} \frac{F_{CW}(q^2) dq^2}{q_{\max}^2 - q_{\min}^2}$$

Usual approach: assume $F_{CW} \approx F_{Ch}^{\mathrm{daughter}} -> R_{CW} = R_{Ch, 1}$

But R_{CW} can be expressed via charge radii assuming approximate isospin symmetry


$$R_{\rm CW}^2 = R_{\rm Ch,1}^2 + Z_0 (R_{\rm Ch,0}^2 - R_{\rm Ch,1}^2) = R_{\rm Ch,1}^2 + \frac{Z_{-1}}{2} (R_{\rm Ch,-1}^2 - R_{\rm Ch,1}^2)$$
 Seng 2212.02681

Charge radii + isospin symmetry -> nuclear recoil

A	$R_{\mathrm{Ch},-1}$ (fm)	$R_{\mathrm{Ch,0}}$ (fm)	$R_{\mathrm{Ch},1}$ (fm)	$R_{\mathrm{Ch},1}^2 \; (\mathrm{fm}^2)$	$R_{\rm CW}^2~({\rm fm}^2)$
10	¹⁰ C	¹⁰ ₅ B(ex)	¹⁰ Be: 2.3550(170) ^a	5.546(80)	N/A
14	¹⁴ O	$^{14}_{7}N(ex)$	$_{6}^{14}\text{C}: 2.50 \ 25(87)^{\text{a}}$	6.263(44)	N/A
18	¹⁸ ₁₀ Ne: 2.9714(76) ^a	$_{9}^{18}F(ex)$	¹⁸ O: 2.77 26(56) ^a	7.687(31)	13.40(53)
22	$^{22}_{12}$ Mg: $3.0691(89)^b$	$_{11}^{22}$ Na(ex)	²² ₁₀ Ne: 2.9525(40) ^a	8.717(24)	12.93(71)
26	$^{26}_{14}\mathrm{Si}$	$^{26m}_{13}$ A1	$^{26}_{12}$ Mg: $3.0337(18)^a$	9.203(11)	N/A
30	$^{30}_{16}S$	$^{30}_{15}P(ex)$	³⁰ ₁₄ Si: 3.1336(40) ^a	9.819(25)	N/A
34	³⁴ ₁₈ Ar: 3.3654(40) ^a	³⁴ C1	$^{34}_{16}$ S: $3.2847(21)^a$	10.789(14)	15.62(54)
38	$^{38}_{20}$ Ca: 3.467(1) ^c	$^{38m}_{19}$ K: $3.437(4)^d$	$^{38}_{18}$ Ar: 3.4028(19) ^a	11.579(13)	15.99(28)
42	⁴² ₂₂ Ti	⁴² ₂₁ Sc: 3.5702(238) ^a	⁴² ₂₀ Ca: 3.5081(21) ^a	12.307(15)	21.5(3.6)
46	$^{46}_{24}{ m Cr}$	$^{46}_{23}\mathrm{V}$	⁴⁶ ₂₂ Ti: 3.6070(22) ^a	13.010(16)	N/A
50	⁵⁰ ₂₆ Fe	⁵⁰ ₂₅ Mn: 3.7120(196) ^a	⁵⁰ ₂₄ Cr: 3.6588(65) ^a	13.387(48)	23.2(3.8)
54	⁵⁴ ₂₈ Ni: 3.738(4) ^e	⁵⁴ Co	⁵⁴ ₂₆ Fe: 3.6933(19) ^a	13.640(14)	18.29(92)
62	$_{32}^{62}{ m Ge}$	$_{31}^{62}$ Ga	$^{62}_{30}$ Zn: $3.9031(69)^{b}$	15.234(54)	N/A
66	⁶⁶ ₃₄ Se	$_{33}^{66}$ As	$^{66}_{32}{ m Ge}$	N/A	N/A
70	$_{36}^{70}{ m Kr}$	$_{35}^{70}\mathrm{Br}$	$_{34}^{70}$ Se	N/A	N/A
74	$_{38}^{74}$ Sr	⁷⁴ ₃₇ Rb: 4.1935(172) ^b	⁷⁴ ₃₆ Kr: 4.1870(41) ^a	17.531(34)	19.5(5.5)

Charge radii + isospin symmetry -> nuclear recoil

Total decay rate
$$\sim ft |V_{ud}|^2 \sim |V_{ud}|^2 \int_0^{Q_{EC}^2} dQ^2 F_{CW}(Q^2)$$

Only total rate measured — if radius underestimated, V_{ud} will come out smaller

Systematic shift by up to 0.1% to some ft values —> may resolve CKM deficit! Estimate from isospin symmetry — but isospin symmetry broken, how credible? Theory strategy: compute all radii AND δ_C — check pattern, compare to available data, motivate exp.

Discussion & Caveats

Precision tests of SM with CKM unitarity at few 10^{-4} —> 2-3 σ deficit —> V_{ud} guilty!

 V_{ud} from 0^+ nuclear decays: nuclear corrections to warrant 0.02% precision, $ft o \mathscr{F}t$

Crucial for constant Ft: isospin-breaking correction δ_C —> affects bounds on BSM too!

 δ_C not directly measurable —> theory input necessary - ab initio era commenced, but...

Proposal: look for phenomenological tests for nuclear theory calculations

Precise nuclear charge radii —> input to δ_C and ft-values via CC radius R_{CW}

Highest precision from μ atom spectra (reference radius) + isotope shifts (King's plot)

Caveat: for needed precision —> nuclear polarization

Historically: Tables of nuclear radii based on old Rinker-Späth nuclear polarization

e.g. Angeli-Marinova, Fricke-Heilig

Similar physics: Δ_{NP} in atoms <—> δ_{NS} in β -decays

Recent insights from dispersion theory prospective for δ_{NS}

Follows progress in Δ_{NP} in light μ atoms

Seng, MG 2211.10214

Talks: Anna Vyatkina, Igor Valuev

Neutron skins of stable daughters from PVES — feasibility studies at MESA @ Mainz