Nuclear Structure in Muonic Atoms: µH and µD

Vadim Lensky

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz

International Conference on Precision Physics and Fundamental Physical Constants

FFK 2023

Vienna, May 26, 2023

Lamb Shift in (Muonic) Atoms and Ions

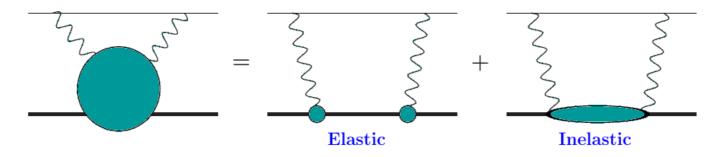
- $2P_{3/2}$ Atomic spectra are sensitive to nuclear properties: 2P_{1/2} Lamb Shift: $E_{LS} = E_{QED} + C R_E^2 + E_{NS}$ μ H Expand in α , $Z\alpha$ charge radius - nuclear size $\mathcal{C} \propto \alpha^4 + \dots$ Lamb - nuclear structure $E_{\rm NS} \propto \alpha^5 + \dots$ shift Muonic atoms: greater sensitivity to charge radii 2S_{1/2} 2S hyperfine splitting Bohr radius $a = (Z \alpha m_r)^{-1}$
- But also greater sensitivity to subleading nuclear response

$$\Delta E = \frac{2\pi Z \alpha}{3} \frac{1}{\pi (an)^3} \left[R_E^2 - \frac{Z \alpha m_r}{2} R_F^3 \right] + \dots$$

Friar radius (only a part of the subleading nuclear response)

Two-Photon Exchange (TPE)

- Described in terms of (doubly virtual forward) Compton scattering: VVCS
- Elastic ($v = \pm Q^2/2M_{target}$, elastic e.m. form factors) and inelastic (~ nuclear generalised polarisabilities)



• Defines the theoretical uncertainty as of now

	Correction	$\mu { m H}$	$\mu \mathrm{D}$	$\mu^{3}\mathrm{He}^{+}$	$\mu^4 \mathrm{He}^+$		
$egin{array}{l} E_{ m QED} \ {\cal C} r_C^2 \ E_{ m NS} \end{array}$	point nucleus finite size nuclear structure	$206.0344(3) \\ -5.2259r_p^2 \\ 0.0289(25)$	$228.7740(3) \\ -6.1074r_d^2 \\ 1.7503(200)$	$\begin{array}{c} 1644.348(8) \\ -103.383 r_h^2 \\ 15.499(\textbf{378}) \end{array}$	$\begin{array}{c} 1668.491(7) \\ -106.209 r_{\alpha}^2 \\ 9.276(\textbf{433}) \end{array}$		
$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.612(86)	1378.521(48)		
	Pachucki, VL, Hagelstein, Li Muli, Bacca, Pohl – theory review (2022) ^a experiment: CREMA (2013-2023)						

VVCS and Structure Functions

• Forward spin-1/2 VVCS amplitude

$$p = T_{fi}$$
 p

$$\begin{aligned} \alpha_{\rm em} \, M^{\mu\nu}(\nu, \, Q^2) &= -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) \, \mathcal{T}_1(\nu, \, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} \, q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} \, q^{\nu} \right) \, \mathcal{T}_2(\nu, \, Q^2) \right. \\ &+ \frac{i}{M} \, \epsilon^{\nu\mu\alpha\beta} \, q_\alpha s_\beta \, S_1(\nu, \, Q^2) + \frac{i}{M^3} \, \epsilon^{\nu\mu\alpha\beta} \, q_\alpha (p \cdot q \, s_\beta - s \cdot q \, p_\beta) \, S_2(\nu, \, Q^2) \right\} \end{aligned}$$

Lamb Shift: $E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0)\right]^2 \int \frac{d^4q}{(2\pi)^4} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$ Any spin!

• Unitarity and analyticity, data-driven: dispersive relations

Structure functions $F_1(x, Q^2)$, $F_2(x, Q^2)$: inclusive electron scattering

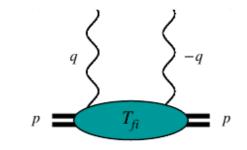
$$T_{1}(\nu, Q^{2}) = T_{1}(0, Q^{2}) + \frac{32\pi M \nu^{2}}{Q^{4}} \int_{0}^{1} dx \frac{x F_{1}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}},$$

$$T_{2}(\nu, Q^{2}) = \frac{16\pi M}{Q^{2}} \int_{0}^{1} dx \frac{F_{2}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}} \qquad x = Q^{2}/(2M\nu)$$

- The subtraction function $T_1(0, Q^2)$ is not directly accessible in experiment
- Data on structure functions is deficient (for anything other than proton)

VVCS and Structure Functions

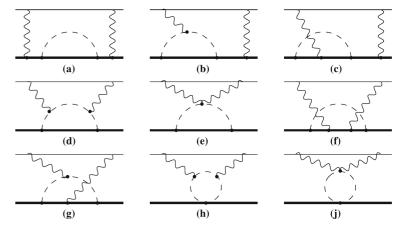
• Forward spin-1/2 VVCS amplitude



$$\begin{aligned} \alpha_{\rm em} \, M^{\mu\nu}(\nu, Q^2) &= -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) \, T_1(\nu, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} \, q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} \, q^{\nu} \right) \, T_2(\nu, Q^2) \right. \\ &+ \frac{i}{M} \, \epsilon^{\nu\mu\alpha\beta} \, q_{\alpha} s_{\beta} \, S_1(\nu, Q^2) + \frac{i}{M^3} \, \epsilon^{\nu\mu\alpha\beta} \, q_{\alpha}(p \cdot q \, s_{\beta} - s \cdot q \, p_{\beta}) \, S_2(\nu, Q^2) \right\} \end{aligned}$$

Lamb Shift: $E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0)\right]^2 \int \frac{d^4q}{(2\pi)^4} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$ Any spin!

- Typical energies in (muonic) atoms are small: use effective field theories
 - chiral EFT (covariant, HB, ...)
 - or even pionless EFT for nuclear effects
 - expansion in powers of a small parameter
 - order-by-order uncertainty estimate
- Calculate VVCS or structure functions
- In nuclei heavier than proton: also calculate the elastic form factors



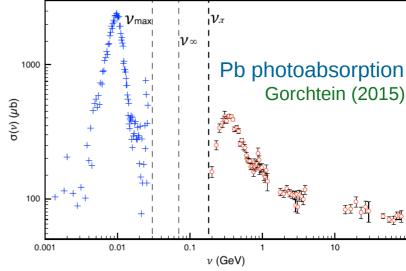
Nuclei Heavier than Proton

- Most of the TPE correction is nuclear (as in: no nucleon polarisation)
- Nuclear part of subtraction function converges (finite energy sum rule)

Gorchtein (2015)

- TPE integrals with nuclear response functions from **χ**EFT will converge
- "Most popular" method

$$E_{\text{pol}} = -\frac{4 \pi \alpha^2}{3} \phi^2(0) \int_{E_T} dE \sqrt{\frac{2 \mu}{E}} |\langle \phi_N | \vec{d} | E \rangle|^2$$



Friar, Pachucki, Wienczek, Kalinowski, Rosenfelder, Leidemann, Bacca, Ji, Hernandez, Acharya, Li Muli, VL, ...

- Single-nucleon contributions need to be accounted for separately
 - relatively more important in heavier nuclei
 - sizeable uncertainty!
 - neutron not so well constrained empirically

	$\delta^A_{ m Zem}$	$\delta^A_{ m pol}$	$\delta^N_{ m Zem}$	$\delta^N_{ m pol}$	$\delta_{ ext{TPE}}$	
$ \frac{\mu^{2}H}{\mu^{3}H} \\ \mu^{3}He^{+} \\ \mu^{4}He^{+} $	$\begin{array}{r} -0.423(04) \\ -0.227(06) \\ -10.49(23) \\ -6.14(31) \end{array}$	-1.245(13) -0.480(11) -4.23(18) -2.35(13)		-0.020(10) -0.031(17) -0.25(13) -0.34(20)	-1.718(17) -0.771(22) -15.49(33) -9.37(44)	
	nuclear individual nucleons					
	Ji et al. (2018)					

Lamb Shift of μ H in Covariant B χ PT

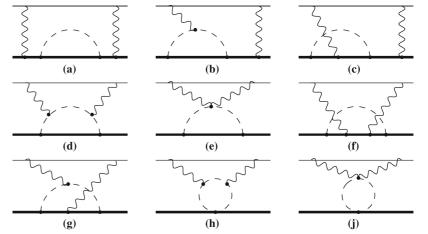
- Delta counting: $\Delta = M_{\Delta} M \gg m_{\pi}$
- The contributions of the Delta isobar are suppressed by powers of m_{π}/Δ
- Expansion in powers of

 $p/\Delta \sim m_\pi/\Delta \sim 0.5$

• LO B**χ**PT: pion-nucleon loops

 $\Delta E_{2S}^{\text{LO, pol}} = -9.6^{+1.4}_{-2.9} \ \mu\text{eV}$

• Delta exchange:



Alarcon, VL, Pascalutsa (2014)



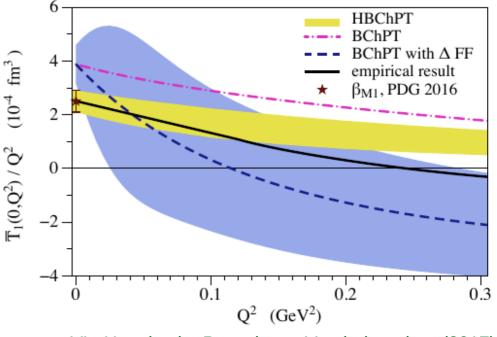
- suppressed in ΔE_{2S}^{pol} but affects the subtraction
- insert transition form factors (Jones-Scadron)

$$\Delta E_{2S}^{\Delta- ext{pole}} = 0.95 \pm 0.95 \ \mu eV$$

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

Various Subtraction Functions

- The diversity of the results for the proton subtraction function $T_1(0, Q^2)$
 - HBChPT: dipole FF, matches β_{M1} [PDG] and the slope at 0 modification of Birse, McGovern (2012)
 - BChPT: transition FFs change the subtraction function
 - Empirical: Regge asymptotic at high energy subtracted Tomalak, Vanderhaeghen (2015)



VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

- Zero crossing at low Q^2 emerges in BChPT with FFs; established in the empirical derivation, but the position not well known (0.1..0.4 GeV²)
- Big cancellations between different mechanisms (πN and $\pi \Delta$ loops vs. Δ pole), also cancellations in the LS integral because of the sign change
- Empirical derivation has sizeable errors towards $Q^2 = 0$ (not shown) attributed to mismatch between structure function fit in the resonance region (Christy-Bosted) and at high energies (Donnachie-Landshoff) => needs a better (combined) structure function parametrization

Lamb Shift of µH in Various Approaches

Reference	$E_{2S}^{(\text{subt})}$	$E_{2S}^{(\mathrm{inel})}$	$E_{2S}^{(\mathrm{pol})}$	$E_{2S}^{(\mathrm{el})}$	$E_{2S}^{\langle 2\gamma \rangle}$
DATA-DRIVEN DISPERSIVE EVALUATION					
(75) Pachucki '99	1.9	-13.9	-12(2)	-23.2(1.0)	-35.2(2.2)
(76) Martynenko '06	2.3	-16.1	-13.8(2.9)		
(77) Carlson et al. '11	5.3(1.9)	-12.7(5)	-7.4(2.0)		
(78) Birse and McGovern '12	4.2(1.0)	-12.7(5)	-8.5(1.1)	-24.7(1.6)	-33(2)
(79) Gorchtein et al.'13 $^{\rm a}$	-2.3(4.6)	-13.0(6)	-15.3(4.6)	-24.5(1.2)	-39.8(4.8)
(80) Hill and Paz '16					-30(13)
(81) Tomalak'18	2.3(1.3)		-10.3(1.4)	-18.6(1.6)	-29.0(2.1)
Leading-order $B\chi PT$					
(82) Alarcòn et al. '14			$-9.6^{+1.4}_{-2.9}$		
(83) Lensky et al. '17 $^{\rm b}$	$3.5^{+0.5}_{-1.9}$	-12.1(1.8)	$-8.6^{+1.3}_{-5.2}$		
LATTICE QCD					
(84) Fu et al. '22					-37.4(4.9)

Table 1 Forward 2γ -exchange contributions to the 2S-shift in μ H, in units of μ eV.

^aAdjusted values due to a different decomposition into the elastic and polarizability contributions.

^bPartially includes the $\Delta(1232)$ -isobar contribution.

Antognini, Hagelstein, Pascalutsa (2022)

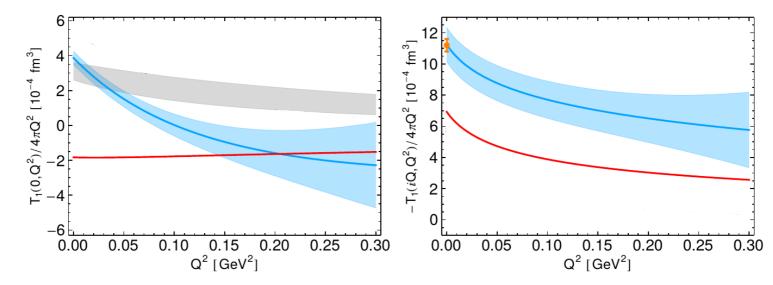
- Agreement between different approaches, also on the size of the subtraction contribution separately despite the variation in $T_1(0, Q^2)$
- Still, the subtraction contribution has the biggest uncertainty, and needs to be further constrained

Subtraction Function: How to Constrain it?

$$T_{1}(0, Q^{2}) = \beta_{M1} Q^{2} + \left[\frac{1}{6}\beta_{M2} - \alpha_{em}\sqrt{\frac{3}{2}}P'^{(M1,M1)0}(0) + \frac{1}{(2M)^{2}}\beta_{M1} + \alpha_{em}b_{3,0}\right] Q^{4} + \mathcal{O}(Q^{6})$$

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

- The knowledge of $b_{3,0}$ constrains the slope
- Get from dilepton electroproduction, $ep o ep \ell^+ \ell^-$ Pauk, Carlson, Vanderhaeghen (2020)
- A different subtraction point: $v_s = iQ$ instead of $v_s = 0$ Hagelstein, Pascalutsa (2021)
 - might be advantageous to use [no zero crossing at low Q^2 , less affected by cancellations, smaller Δ contribution, inelastic contribution becomes small]



• An improvement in empirical extraction of $T_1(0, Q^2)$ [or $T_1(iQ, Q^2)$] is possible, needs better parametrizations of proton structure functions!

Theory Framework for µD: Pionless EFT

- pionless EFT for nuclear effects
 - expansion in powers of a small parameter $p/m_{\pi} \simeq \gamma/m_{\pi} \simeq 1/3$
 - order-by-order Bayesian uncertainty estimate
 - easier to solve than χ EFT (analytic results for *NN*)
 - easier to analyse
 - explicit gauge invariance and renormalisability
 - slower convergence (~larger uncertainty) and (potentially) a narrower range of applicability than χEFT
 - the latter two issues do not seem to affect deuteron VVCS
- We in fact do go beyond strict pionless and use χ EFT/data driven DR to estimate higher-order individual nucleon contributions

Setup for Deuteron VVCS and TPE

• Longitudinal and Transverse amplitudes in pionless EFT

$$f_{L}(v, Q^{2}) = -T_{1}(v, Q^{2}) + \left(1 + \frac{v^{2}}{Q^{2}}\right) T_{2}(v, Q^{2}), \qquad f_{T}(v, Q^{2}) = T_{1}(v, Q^{2})$$
Lamb Shift:

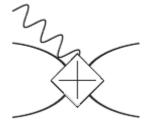
$$\Delta E_{nl} = -8i\pi m \left[\phi_{nl}(0)\right]^{2} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{f_{L}(v, Q^{2}) + 2(v^{2}/Q^{2})f_{T}(v, Q^{2})}{Q^{2}(Q^{4} - 4m^{2}v^{2})}$$

$$f_{L} = O(p^{-2}), \qquad f_{T} = O(p^{0}) \quad \text{in the VVCS amplitude}$$

$$\alpha_{E1} = 0.64 \text{ fm}^{3}$$

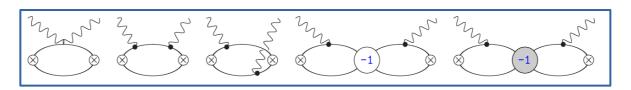
$$\beta_{M1} = 0.07 \text{ fm}^{3}$$

- Transverse contribution to TPE starts only at N4LO
- N4LO: ΔE_{nl} needs to be regularised, an unknown lepton-NN LEC
- We go up to N3LO in f_L , and up to (relative) NLO in f_T [cross check]
- One unknown LEC at N3LO in f_L
 - important for the charge form factor
 - extracted from the H-D isotope shift and proton R_E

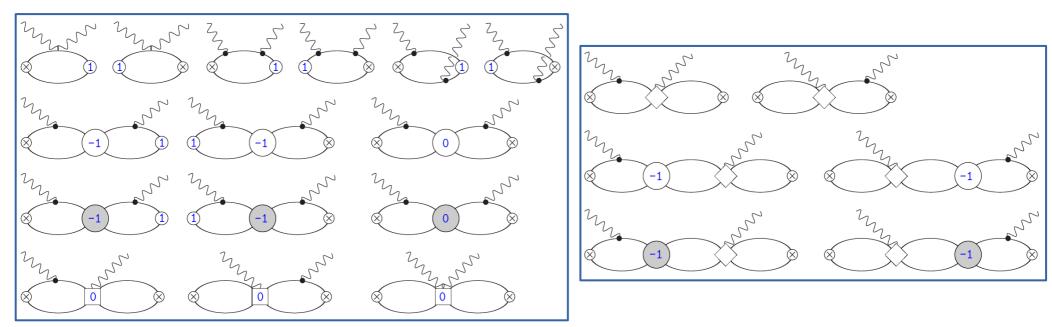


Deuteron VVCS: Feynman Graphs

LO



NLO

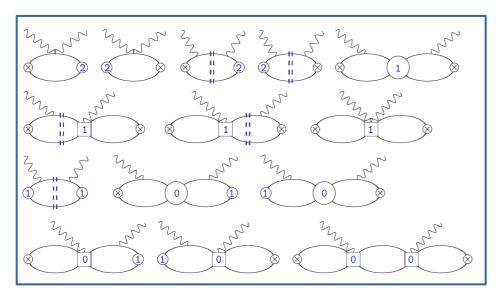


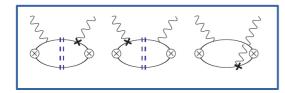
- Amplitudes are calculated analytically
- Checks:
 - the sum of each subgroup (+ respective crossed graphs) is gauge invariant
 - regularisation scale dependence has to vanish

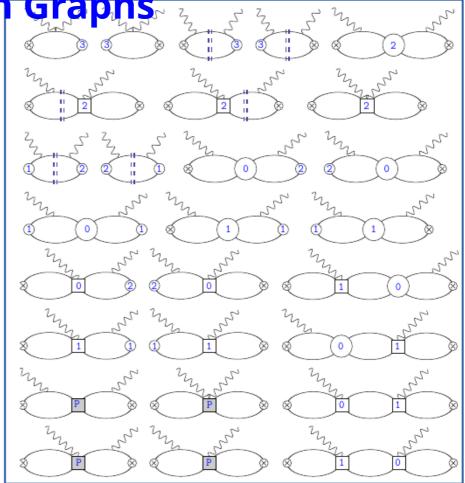
N3LO

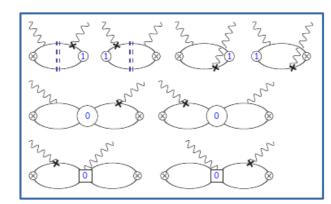
Deuteron VVCS: Feynman Graphs

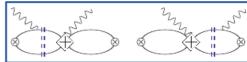
NNLO



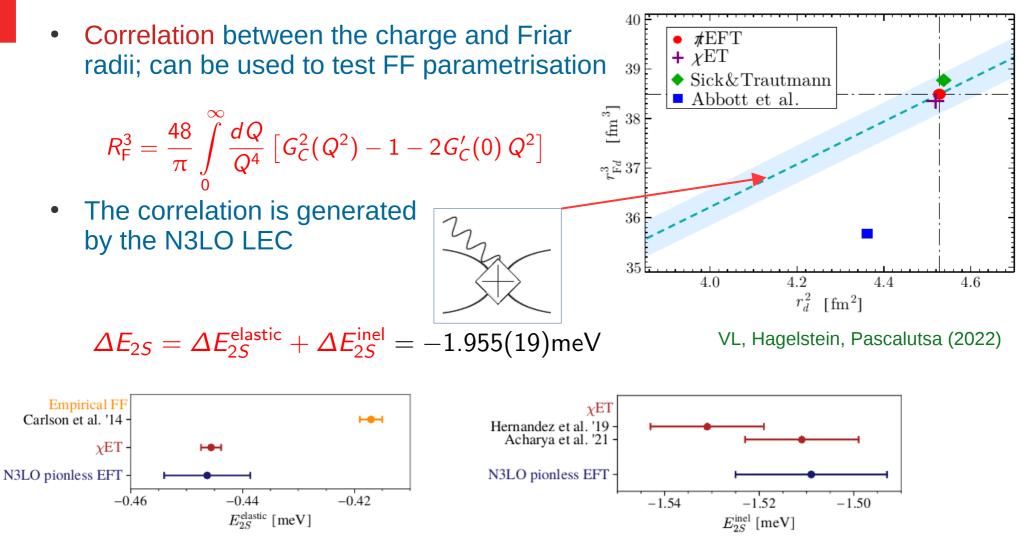








Deuteron Charge Form Factor and TPE in µD



- Abbott et al. charge FF is not suitable for studying the low-Q properties
- Agreement with χEFT vindicates both EFTs

TPE in µD: Higher-Order Corrections

- $\Delta E_{2S} = \Delta E_{2S}^{\text{elastic}} + \Delta E_{2S}^{\text{inel}} = -1.955(19) \text{meV}$ Higher-order in α terms are important in D
 - Coulomb $\left[\mathcal{O}(\alpha^6 \log \alpha)\right]$

taken from elsewhere $\Delta E_{2S}^{\text{Coulomb}} = 0.2625(15) \text{ meV}$

- $eVP \left[\mathcal{O}(\alpha^6)\right]$ Kalinowski (2019) reproduced in pionless EFT $\Delta E_{2S}^{eVP} = -0.027 \text{ meV}$
- Single-nucleon terms at N4LO in pionless EFT and higher
 - insert empirical FFs in the LO+NLO VVCS amplitude
 - polarisability contribution (inelastic+subtraction)
 - inelastic: *ed* scattering data above π threshold

Carlson, Gorchtein, Vanderhaeghen (2013)

• subtraction: nucleon subtraction function from χEFT

non-forward

- in total: small but sizeable: $\Delta E_{2S}^{hadr} = -0.032(6) \text{ meV}$

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

TPE in µD: Higher-Order Corrections

- Higher-order in α terms are important in D
 - Coulomb $\left[\mathcal{O}(\alpha^6 \log \alpha)\right]$

taken from elsewhere $\Delta E_{2S}^{\text{Coulomb}} = 0.2625(15) \text{ meV}$

- $eVP \left[\mathcal{O}(\alpha^6)\right]$ Kalinowski (2019) reproduced in pionless EFT $\Delta E_{2S}^{eVP} = -0.027 \text{ meV}$
- Single-nucleon terms at N4LO in pionless EFT and higher
 - insert empirical FFs in the LO+NLO VVCS amplitude
 - polarisability contribution (inelastic+subtraction)
 - inelastic: ed scattering data Carlson, Gorchtein, Vanderhaeghen (2013)
 - subtraction: nucleon subtraction function from χ EFT

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

 $\Delta E_{2S} = \Delta E_{2S}^{\text{elastic}} + \Delta E_{2S}^{\text{inel}} = -1.955(19) \text{meV}$

non-forward

- in total: small but sizeable: $\Delta E_{2S}^{hadr} = -0.032(6) \text{ meV}$

 $\Delta E_{2S}^{2\gamma} = \Delta E_{2S}^{\text{elastic}} + \Delta E_{2S}^{\text{inel}} + \Delta E_{2S}^{\text{hadr}} + \Delta E_{2S}^{\text{eVP}} + \Delta E_{2S}^{\text{Coulomb}} = -1.752(20) \text{ meV}$

TPE Corrections: A Challenge for Theory

• The uncertainties show that TPE corrections are a challenge:

	Correction	$\mu { m H}$	$\mu { m D}$	$\mu^3 \mathrm{He}^+$	$\mu^4 \mathrm{He}^+$		
$E_{ ext{QED}}$ $\mathcal{C} r_C^2$ $E_{ ext{NS}}$	point nucleus finite size nuclear structure	$206.0344(3) \\ -5.2259r_p^2 \\ 0.0289(25)$	$228.7740(3) \\ -6.1074r_d^2 \\ 1.7503(200)$	$\begin{array}{c} 1644.348(8) \\ -103.383 r_h^2 \\ 15.499({\color{red} 378}) \end{array}$	$\begin{array}{c} 1668.491(7) \\ -106.209r_{\alpha}^2 \\ 9.276(\textbf{433}) \end{array}$		
$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.612(86)	1378.521(48)		
		Pac	Pachucki, VL, Hagelstein, Li Muli, Bacca, Pohl (20				

Both progress in understanding nucleon structure and more precise nuclear interactions are needed to match experimental precision

 Analysing, e.g., isotope shift (H-D, ³He-⁴He) allows one to extract the TPE corrections
 talk by Y. van der Werf on Wednesday

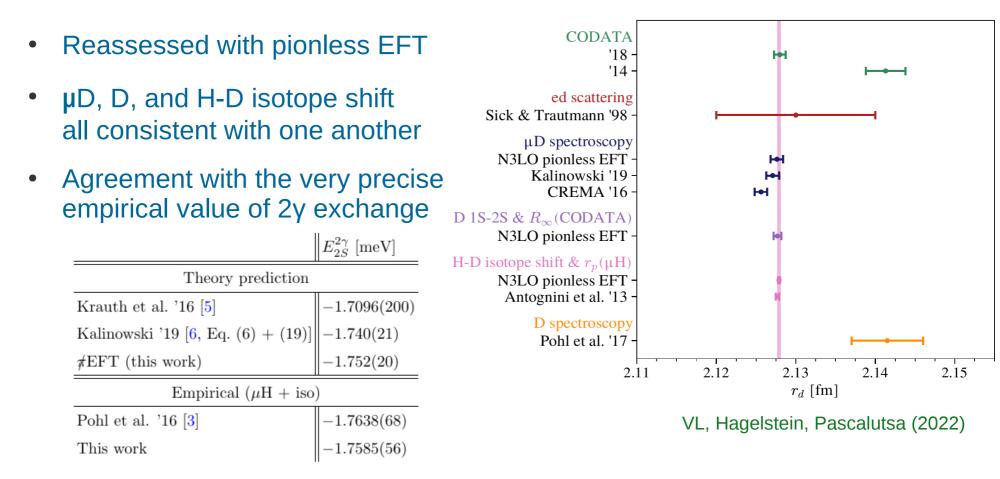
H-D:
$$r_d^2 - r_p^2 = 3.820\,61(31)\,\mathrm{fm}^2$$

very precise due to partial cancellation of uncertainties

$$= E_{TPE}(\mu D) = -1.7585(56) \text{ meV}$$

Benchmark for nuclear theory calculations

Deuteron Charge Radius and TPE in µD



- Nuclear-level response well under control
- Single-nucleon structure starts to be important at this level of precision
 - even more important in heavier nuclei
- Experimental precision presents a challenge for theory

Outlook

- Experimental precision presents a challenge for theory
- Further progress in studying the proton structure is important for matching the precision in μ H but also as input for heavier nuclei
 - more reliable structure function fits/parametrisations to further constrain proton subtraction function
 - alternative subtraction: $T_1(iQ, Q^2)$ instead of $T_1(0, Q^2)$ may work better in μ H
- With more advanced nuclear potentials (χ ET) the uncertainty in µD and heavier atoms/ions will decrease
 - a naïve option is to go to higher orders (N4LO...)
 - one can also try an alternative way to fix the parameters of the potential, e.g., constraining the few-body charge radius
- More precise spectroscopy of normal atoms (isotope shift and so on): extract the TPE corrections to constrain the nuclear structure

Thank You for Your Attention!