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The theoretically derived energy of a molecular rovibrational level is composed of several additive components:
nonrelativistic, relativistic, quantum electrodynamic, etc. For a light molecule, like hydrogen or its isotopologue,
this energy can be well described in the framework of the nonrelativistic quantum electrodynamic theory (NRQED)
using the following expansion in powers of the fine structure constant
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The accuracy of the theoretically predicted energy is limited mainly by its least accurate component. In recent
years, we have developed a variational method of solving the Schrödinger equation which treats the hydrogen
molecule as a four-particle system without separation of nuclear and electronic motions [1–5]. As a result, the
uncertainty of the dominating, nonrelativistic component of the energy, E(2), has reached the level of 10−7 −
10−8 cm−1 (< 3 kHz). A typical procedure of decomposing the energy into the clamped nuclei, adiabatic, and
nonadiabatic components can hardly enable such an accuracy.

In this communication, we report on extending this nonadiabatic method to the relativistic correction term,
E(4). The four-body exponential wave function is applied to evaluate the expectation value of the Breit-Pauli
Hamiltonian. The main obstacle encountered in this approach is the need for a whole class of integrals resulting
from combining relativistic operators with exponential basis functions. Such integrals∫
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where one of the integer powers p = 2 and the remaining p = 1, have been successfully evaluated, and the pre-
liminary results of the relativistic correction will be reported. The convergence analysis shows that the numerical
uncertainty of this correction is of the order of 10−7 cm−1. As in the case of the nonrelativistic component, the
relativistic term uncertainty is small enough to enable its elimination from the overall uncertainty budget. An
essential feature of the newly developed method is its applicability to an arbitrarily high rotational angular mo-
mentum without significant loss in accuracy. With the new relativistic results, augmented by QED corrections, the
achieved accuracy is limited limited only by the uncertainty of the quantum electrodynamic effects, E(n), n ≥ 5.

Several recent measurements [6–12] have indicated a systematic discrepancy between the most accurate the-
oretical and experimental data. A confrontation of the selected rovibrational transition energies will be made.
Possible explanations of this observation will be discussed, setting hints for further theory development.
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