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Overview

* Types of coil (the insulation zoo)
 REBCO transition (superconducting to resistive)

* types of detection (systems & signals)



HTS Coil Designs Overview

e Coil insulation Zoo

m * Very low resistance (Fully soldered long time constants days 1600 x longer time
constants then dry in small solenoids tested at CERN)

* Medium resistance (Stainless steel tapes between turns several hrs)
* Medium + resistances (Removed tape edges + sealed + stainless steel tapes)
 Medium ++ resistance ( Dry wound coil with controlled tension 10’s of min to an hr )

e Switchable insulations (fast ramping and switch to NI after quench, + heating at
Vit insulation)

Smart insulation (switches with a temp change 150K, V203 insulation.)
Varistor Insulation ( switches with a voltage SiC.)

- * Classical fully insulated coil.

Note time constants are dependent on many variables
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Fig. 1. Predicted current path in the case of (a) charging the coil, (b) operation
in steady state, (c) in the presence of a normal zone, and (d) during discharge.
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https://www.researchgate.net/publication/234995077_Physical_properties_of_Hastelloy_R_C-276_TM_at_cryogenic_temperatures/figures

HTS Quench
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Cutting of the coil edges to improve radial resistance

Removing the edges has pros and cons! The resistance can
be increased but cutting off the silver lets the copper get

to the HTS and may degrade the HTS with time, also
cutting off the edges may start cracks in the HTS layer ?

Seal the edges to
protect the HTS
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Complex current paths:
Axial current path after quench
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stat
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Current

Edge joints

During a quench the voltage increases, the
insulation switches to conducting and the
current re-directs axially through the copper




Voltage taps

~ Drilled holes through PCB with std
connector layout. The holes have
solder that link all the layers




Superconducting Transition (We don’t like Quench for HTS)
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Detecting the Onset of a Quench I (electric field) 12

Protection Triggered

 Drift in the electric i

field is a clear
indication that the
magnet is about to
quench

e If not ramped fast,
the electric field
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e Reduction of only
100 A results in
immediate recovery!
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Detecting the Onset of a Quench / Transition (electric field) 13
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Frather2 Circuit
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Change of Roebel resulted in cancelation wire moving 15

Feather2(12)

I

Feather2(34)




Screening currents
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Forces at the edges where the current flows
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Figure 4.29. Surface force density distribution (pressure) resulting from the current distribution in an aligned block coil pack when operated at 8 kA
in a background field of 13 T. The vectors indicate the direction of the force and the color the magnitude. Note that the geometry is not shown to scale.
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Induction cancilation and fibre optic temp / strain
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150um insulated
copper

Inductive
Cancelation

 Fiber temperatureand
stress sensor that looks
at the over the full 30 m
of cable

« Heater to calibrate the
position along the fiber




Fiber --- temp and stress over every turn 20

Fibre team mapping temperature and
stress maps onto the feather2 coils

we see cool down. Cooling from the bottom
of the magnet and through the current
leads. We also see stress in the coll as
powering the blue is compression and red
tension. So, the inner edge of the coil end
IS under compression. Just initial results
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Optical Fibber's & inductive cancelation wire
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Don’t re-invent the wheel!
Just improve it !

4000 BC airless

Future airless tiers



Effect of single coil testing and broken
cancelation wire

Red: coil 3 voltage

Blue: coil 3 voltage with inductive cancellation wire
[ICW] but one of the 4 coils wires was broken in

| the magnet, we expected better result.

o

Wl
I

L

Black: differential voltage (i.e. coil 3 - coil 4)



8ms +2 ms
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Max test current 10 kA
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Single Feather2 ( Coil 3 0or4)

Time to reach 30 mV threshold + 10 ms switching

delay, then 40 mOhm dump
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Maximum expected T hotspot

Feather2 Fresca2
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Induction of high currents
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Wiring layout

| CoilF24 |

Lower Upper

| CoilF23 |

Lower

CENTRAL

CENTRAL




V-l measurements in coil 2.3

The degradation is visible from VI 2 to
VI 3 (after the many extractions in
Fresca2) and from VI 4 to VI 5 (after
the magnetic measurements to 2 kA in
Fresca, 4 kA in Feather).

Also, initial degradation from the
standalone test to the first VI
performed in this test campaign is
visible

[a—
—
p—
—
p—
—
p—

V 4.8-4.7 [uV

Dﬂn
—e—2019 11 07-12_15 35 o
+4|——2019 11 08-11 01 46 §
——2020 12 03-15 35-32 F
[
00 4H—*—2020 12 03-17 05-47 '~L,
~
2020 12 07-16 10-18B >
: s X
2020 12 08-14 20-20 B S o
—8—2020 12 10-08 39-22 L/ U
o> &
600 4+H—*—2020 12 11-08
400 +
200 1+
0 — | % ——o
0 2000 4000 6000 8000 10000

Current [A]



The End
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Insulated coils - Partial insulation(Pl) - No Insulation (NI)

- Variable Insulation (VI) also varistor




Why? — 2. High Thermal Stability I
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Stability of HTS
Conductor illustrated
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Due to high temperature
margin it is super stable
and does not quench
randomly and thus it
does not train
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