FCC-ee essentials

- Physics programme
- Status of project
- First steps towards detector design

Guy Wilkinson UK future e⁺e⁻ meeting Oxford 5/7/22

FCC-ee: baseline run plan (according to Conceptual Design Report)

Natural to collect data in order of \sqrt{s} , over a period of ~15 years. However CERN management insists on flexibility, with the option to collect the HZ data first. The implications of this are being examined and will be presented in mid-term review.

FCC-ee: baseline run plan

FCC-ee: TeraZ opportunities

The enormous Z statistics ($\sim 10^5 \text{ x LEP}$) is the key feature that distinguishes FCC-ee physics from programme at linear e⁺e⁻ machines. Opens many opportunities, which in turn places particular unique demands on detectors:

• Ultra-precise EW (and QCD) measurements

Repeat LEP measurements (and more, *e.g.* α_{QED}) with vastly increased precision. Needs corresponding improvement in systematics from theory, accelerator (*e.g.* E_{CM} measurement) and detector

- \rightarrow this, rather than Higgs physics, sets requirements on detector stability, knowledge of acceptance *etc.*
- Flavour physics, especially with b and taus

e.g. b-sample ~15x that hoped for at Belle II, in a very similar environment, with higher boost and all hadron species

 \rightarrow best possible vertexing, hadron id and π^0/γ id in ECAL

• New physics searches in Z decays, *e.g.* heavy neutral leptons

FCC-ee: baseline run plan

FCC-ee: baseline run plan

s-channel Higgs production and monochromatisation

An intriguing possibility, under evaluation and not in CDR baseline, is to devote a few years operation at E_{CM} =m_H=125 GeV to measure Yukawa coupling to electrons.

But cross-section is tiny...

...& effectively decreased further through ISR and because Higgs width (~4 MeV) small compared to E_{CM} spread.

Note that natural E_{CM} spread for colliding beams is ~100 MeV. This must be reduced by < 1/10. Requires monochromatisation !

Also need good knowledge of m_H (~ Γ_H), good E_{CM} knowledge, & high E_{CM} stability.

The monochromatisation challenge

Introduce horizontal dispersion and collide head on to reduce E_{CM} spread.

Require crab cavities to achieve head-on collisions

Alternatively live without cavities, and rely on good vertex resolution to account for correlation between x and E_{CM} .

The monochromatisation challenge

However, dispersion increases horizontal emittance and reduces luminosity.

Currently, $H \rightarrow e^+e^-$ observation looks on the edge of feasibility – studies ongoing.

How many interaction points?

FCC-ee design as presented in CDR foresaw two interaction points.

How many interaction points?

FCC-ee design as presented in CDR foresaw two interaction points.

However, there are strong physicsdriven arguments for evolving to a four interaction-point layout.

Key points (there are others):

- More data, sooner;
- Systematic robustness with redundancy;
- Better physics coverage.

Indeed, updated design allows for four interaction points, and this may well become new baseline.

Current design parameters

Parameter [4 IPs, 91.2 km,T _{rev} =0.3 ms]	Z	ww	н (zн)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	10000	880	248	36
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.64
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.08/0	4.0/7.25
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [μm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
beam-beam parameter ξ_x / ξ_y	0.004/ .159	0.011/0.111	0.0187/0.129	0.096/0.138
rms bunch length with SR / BS [mm]	4.38 / 14.5	3.55 / <mark>8.01</mark>	3.34 / <mark>6.0</mark>	2.02 / 2.95
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.3	1.33
total integrated luminosity / year [ab ⁻¹ /yr]	87	9.3	3.5	0.65
beam lifetime rad Bhabha + BS [min]	19	18	6	9

Feasibility study

Note mid-term review, in second half of next year.

Mid-term review

Mid-term review scheduled for autumn 2023. Will comprise following deliverables:

Infrastructure & placement

- Preferred placement and progress with host states (territorial matters, initial states, dialogue, etc.)
- Updated civil engineering design (layout, cost, excavation)
- Preparations for site investigations

Technical Infrastructure

- Requirements on large technical infrastructure systems
- System designs, layouts, resource needs, cost estimates

Accelerator design FCC-ee and FCC-hh

- FCC-ee overall layout with injector
- Impact of operation sequence: Z, W, ZH, $t\bar{t}$ vs start at ZH
- Comparison of the SPS as pre-booster with a 10-20 GeV linac
- Key technologies and status of technology R&D program
- FCC-hh overall layout & injection lines from LHC and SC-SPS

Physics, experiments, detectors:

- Documentation of FCC-ee and FCC-hh physics cases
- Plans for improved theoretical calculations needed to reduce the theoretical uncertainties towards matching the FCC-ee statistical precision for the most important measurements.
- First documentation of the main detector requirements to fully exploit the FCC-ee physics opportunities

Organisation and financing:

- Overall cost estimate and spending profile for stage 1 project.

Environmental impact, socio-economic impact:

- Initial state analysis, excavation material management, etc.
- Socio-economic impact and sustainability studies.

[M. Benedikt, Paris FCC week, June 2022]

Timescales and finances

Statements of CERN DG in Paris FCC week (June '22)

Cost category	[MCHF]	%
Civil engineering	5,400	50
Technical infrastructure	2,000	18
Accelerator	3,300	30
Detector (CERN contrib.)	200	2
Total cost (2018 prices)	10,900	100

- If project approved before end of decade → construction can start beginning of 2030s
- FCC-ee operation ~2045-2060
- FCC-hh operation ~2070-2090++ "

"Substantial resources (~5 BCHF) needed from outside CERN's budget... (contributions from non-Member States, special contributions from Host States and other Member States; ongoing discussion with European Commission; private funding?) \rightarrow discussions started. "

Reminder of FCC-ee costs (Z, WW and HZ working points, and for two IP configuration)

Physics, Experiments and Detectors (PED) organisation, and towards detector designs

'Detector concepts' group, which will evaluate possible detector designs against benchmark physics processes, had a <u>kick-off meeting 22-23 June</u>.

Detector constraints and requirements

- 30 mrad beam crossing angle
 - Solenoid field no more than 2 T;
 - Complex and tightly packed MDI;
 - Beampipe of radius 1 cm.
- 'Continuous' beams, ~20 ns bunch spacing
 No power pulsing → cooling issues.
- Extremely high luminosities
 - 10⁻⁵ systematic control (acceptance, *p* measurement stability, luminosity...);
 - Data set of ~ 10^{13} events;
 - Event rates up to 100 kHz.
- Capabilities in heavy-flavour physics
 - Excellent vertexing;
 - Hadron PID from ~1 to ~30 GeV/c;
 - \circ π⁰ and soft γ identification.

- Low-mass tracking
- Momentum resolution to match beam-energy spread (BES).

[F. Bedeschi]

Current detector designs: CLD

- Well established design ('CLIC-like detector');
- Si vertex detector + tracker;
- CALICE-like calorimeter;
- Large coil outside calorimeters;
- Still much scope for optimisation, and for continuous beam operation;
- No significant PID capabilities, but possibilities under consideration (~10 ps timing for TOF, RICH ?).

Current detector designs: IDEA

- MAPS vertex detector;
- Ultra light drift chamber, which is also intended to have significant PID capabilities through cluster counting;
- Compact coil;
- Dual readout calorimeter, possibly augmented by crystal ECAL within coil;
- Very active community, with prototype designs & test beams.

Current detector designs: LAr detector

New kid on the block. Detector based around highly granular Noble Liquid ECAL. Other components:

- (D)MAPS vertex detector (à la ALICE 3 ?);
- Drift chamber tracker;
- Silicon wrapper with time-of-flight (LGAD);
- Thin superconducting solenoid sharing ECAL cryostat;
- Scintillator + (return yoke) iron HCAL;
- Muon tagger.

Backups

Why 4 IPs? More data, sooner

Key example: discovery of *trilinear Higgs coupling* essential for characterising Higgs potential. FCC-hh can measure it to better than +/-5% through double-Higgs prodⁿ. However, FCC-ee has indirect sensitivity through precise x-section measurements.

Baseline running strategy & 2 IPs gives +/- 42% on κ_{λ} , & +/ 34% with HL-LHC.

4 IPs both increases sample sizes, & allows initial stages of FCC-ee programme to be completed earlier, freeing up time for longer high-energy operation.

A very important lever (among several) for enabling discovery before FCC-hh !

Why 4 IPs? Systematic robustness

With only two experiments, important systematic effects risk being overlooked.

At LEP, it was inspection of 1991 individual m_Z results from each experiment that led to appreciation of effect of `RF sawtooth' [PLB 307 (1993) 187].

On a ring containing only L3 & OPAL (or ALEPH & DELPHI) this would have been much harder to spot.

Why 4 IPs? Better physics coverage

Having four detectors allows for a wide range of technological solutions that can fully exploit wide and rich physics possibilities of FCC-ee programme.

e.g. for flavour physics require PID over wide momentum range and calorimetry with good energy resolution for soft π^0 reconstruction.

Such a design...

...great for this....

...less good for this.

Requirements on E_{CM} knowledge

Painstaking work required at LEP to ensure E_{CM} knowledge was sufficient for flagship EW measurements. Even more stringent goals set at FCC-ee.

Ś		mz	Γ _z	m _w	60
intie: cM *	LEP	1.7 MeV	1.2 MeV	9 MeV	
Uncertai from E	FCC-ee (current estimate)	100 keV	25 keV	300 keV	Doesn't look easy !

(Control of E_{CM} at this level is also necessary to keep the associated systematic < statistical uncertainty for sin² θ_W from A_{FB} , $\alpha_{QED}(m_Z)$ & many other observables.)

What were the main challenges that existed at LEP?

- Precise measurement of E_b through Resonant Depolarisation (RDP), but only in a few fills, before or after collisions. E_{CM} knowledge limited by modelling of time evolution between measurements. FCC-ee requires a change of strategy !
- Beam polarisation not available at WW threshold, so RDP not possible. This problem should not exist at FCC-ee thanks to reduced energy spread.

Some mechanisms of E_b variation at LEP

Rise of dipole fields due to stimulation from returning current from TGV.

Short- (tide) and a long- (lake) term ring distortions.

NB at FCC-ee effects will be ~10x larger due to smaller momentumcompaction factor !

Requirements on E_{CM} knowledge

E_{CM} calib. must be a central consideration in FCC-ee design & operational strategy.

 RDP quasi-continuous: perform on pilot bunches for e⁻ and e⁺ several times an hour (overhead: for Z running need to spend ~1 hour at start of fill with wigglers on to allow polarisation to accumulate)

 \rightarrow removes to 1st order all E_b time-variation issues that plagued LEP.

- f_{RF} change to keep beams centred in quadrupoles to suppress residual tidal effects on E_b; furthermore beam-beam offsets must be minimised to suppress dispersion-induced biases on E_{CM}.
- Investment in instrumentation & detailed logging of all machine parameters.
 Willingness to devote machine time to calibration studies (at LEP >50 full days taken in this manner from 1993 onwards).

Experiments must do their part: continual accumulation of $Z \rightarrow I^+I^-$ events enables relative energy changes, crossing angle, and energy spread to be monitored.

Machine-detector interface

Careful attention must be paid to MDI layout so as not to limit performance.

Agreed boundaries between machine & detector + conditions largely satisfactory:

- 2T solenoidal field at Z (possibility of 3T at higher energies under study)
- Low angle acceptance down to 100 mrad. This small value desirable because:
 - Minimises impact on energy-flow measurements;
 - Helps keep systematics manageable for high statistics cross-section measurements.

With the discovery of the Higgs, all particles of the SM have now been found. Very precise measurements of their properties & behaviour, *e.g.* through electroweak observables at (& above) Z pole, will stress-test self-consistency of theory.

A rich array of measurements awaits, for example lineshape parameters:

	LEP	Current FCC-ee			
	uncertainty	estimate			
mz	2200 keV	100 keV (10 ⁻⁶ !)			
Γ _z	2300 keV	25 keV (10 ⁻⁵ !)			

These measurements will unavoidably remain systematics limited (foreseen stat. uncertainty ~4 keV for both), but will require significant time and attention to get right.

Year-1 of Z run will not yield the final result !

Many Z observables have very small intrinsic experimental systematics, which will be further reduced, & may become sub-dominant, with hard work & data-driven studies. *e.g.* forward-backward lepton asymmetries (on-peak & off) (A_{FB}^{II}), lepton-to-hadron ratios (R_I), tau-polarisation asymmetries ($A_{FB}^{pol, T}$), b-specific observables (A_{FB}^{b} , R_b).

Excellent experimental control of off-peak di-muon asymmetry motivates campaign to collect 50-80 ab^{-1} off peak to gain highest sensitivity to Z- γ interference

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \times \left[1 + \frac{8\pi\sqrt{2}\alpha_{\rm QED}(s)}{m_Z^2 G_{\rm F} \left(1 - 4\sin^2\theta_{\rm W}^{\rm eff}\right)^2} \frac{s - m_Z^2}{2s} \right]$$

Allows for clean determination of $\alpha_{QED}(m_Z^2)$, which is a *critical* input for m_W closure tests (see later).

This dependence, & location of half-integer spin tunes, guides the choice of off-peak energies: 87.8 & 93.9 GeV.

Goal: measure $1/\alpha_{QED}(m_Z^2)$ to +/- 0.003.

Why ~150 ab^{-1} (*a*) Z ? Flavour-physics opportunities

For a flavour physicist *more is never enough* ! There are always important measurements that will remain statistics limited. Baseline will deliver a b sample that will be x15 Belle II (+ B_s , $B_c \& \Lambda_b$) & *highly* complementary to LHCb upgrades.

A frequently shown plot, but one that's very topical.

(however there are very nice more recent studies, *e.g.* $B_c \rightarrow \tau v$. See Tues parallel and <u>arXiv:2105.13330</u>)

Unique possibilities at FCC-ee !

• Example of a measurement that LHCb can't really do;

Z samples achievable at linear colliders (if any)
 ^m_{B⁰}, GeV/c²
 will be too small for frontier b physics, in this mode or in almost any other.

However, no cause for complacency:

Having smaller samples would be uncomfortable (& larger would be fantastic!)
 c.f. LHCb has ~5000 decays in the sister B⁰→K*µµ study [PRL 125 (2020) 011802].

Why ~150 ab^{-1} (*a*) Z ? Flavour-physics opportunities

Tau physics leadership passed from LEP, to B factories, & then to Belle II. FCC-ee will deliver 3-4 x more taus than at Belle II, with equally clean environment & boost.

Outstanding opportunities to push lepton-universality tests in muons vs taus (essentially G_F measurement with taus) to new frontier of precision !

Also probe for LFV in tau decay, *e.g.* $\tau \rightarrow \mu \mu \mu$ to $10^{-10} - very$ important in $\mu context$ of hints for lepton-universality violation in LHCb data & elsewhere.

Why 5 x 10¹² Z⁰s ? Direct searches

FCC-ee will be a discovery machine, both through indirect searches (*e.g.* precision EW, Higgs and flavour physics), but also for direct searches for non-SM phenomena.

e.g. 90% CL exclusion limits for heavy neutral lepton

FCC-ee Z-pole running will have enormous potential in searches for LFV decays, heavy sterile neutrinos, axion-like particles *etc*. In all cases integrated lumi is key !

Why 2 years and 12 ab⁻¹ at W⁺W⁻ threshold ?

Threshold scan of 12 ab^{-1} , taken at 157.5 and 162.5 GeV will yield a statistical precision on m_W of 0.5 MeV. Provided E_{CM} can be controlled at similar, or better, level, this will give order of magnitude improvement on best hopes of LHC.

Data very valuable for other studies, *e.g.* V_{cb} from flavour-tagged jets, $\alpha_{QCD}(m_W^2)$ from BRs... Furthermore Z γ return events will provide 10⁻³ determination of N_v.

Why measure m_W to ~0.5 MeV ?

Best possible precision on m_W required to perform critical closure test on SM.

Note, it's not only m_W we need to improve, but also indirect prediction & also m_t .

Why measure m_W to ~0.5 MeV ?

Best possible precision on m_W required to perform critical closure test on SM.

Going to higher energies: m_t

 m_t known to ~0.5 GeV. Significant improvement needed for m_W closure test.

Multi-point threshold scan with 20 fb⁻¹ / point will determine m_t to <20 MeV

Status of closure test after Z progamme, W⁺W⁻ and tt threshold scans

Why study Higgs at two energies ?

Central goal of FCC-ee: model-independent measurement of Higgs width and couplings with (<)% precision. Achieved through operation at two energy points.

Sensitivity to both processes very helpful in improving precision on couplings.

Why study Higgs at two energies ?

Central goal of FCC-ee: model-independent measurement of Higgs width and

High precision achievable for all couplings; good complementarity to HL-LHC:

Collider	HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	LEP3240	CEPC ₂₅₀	FCC-ee ₂₄₀₊₃₆₅		
Lumi (ab ⁻¹)	3	2	1	3	5	5 ₂₄₀	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}~(\%)$	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{\rm HZZ}/g_{\rm HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
δg _{HWW} /g _{HWW} (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hec}/g_{ m Hec}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{\rm Hgg}/g_{\rm Hgg}~(\%)$	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{ m H\tau\tau}/g_{ m H\tau\tau}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
$\delta g_{\rm Hmm}/g_{\rm H\mu\mu}$ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{ m H\gamma\gamma}/g_{ m H\gamma\gamma}$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{\rm Htt}/g_{\rm Htt}$ (%)	3.4	-	_	_	-	-	_	3.1
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0

Relative duration of 240 vs 365 GeV runs an interesting optimisation question in context of sensitivity to Higgs self coupling (see 2 IP vs 4 IP discussion).

Sensitivity to both processes very helpful in improving precision on couplings.

The monochromatisation challenge

Studies still underway – likely require several years to reach SM value at 3σ . However, can do vastly better than any other machine. Also, motivation for 4 IPs !

Upper Limits / Precision on κ_{e}

Final remark: operation at E_{CM} =125 GeV is also valuable for accumulating radiative returns to the Z and improving sensitivity to the number of neutrino families.

Power costs

Luminosity vs. electricity consumption

Electricity cost ~200 CHF per Higgs boson

FCC-ee essentials Guy Wilkinson