

Flavour at the ILC On behalf of ILC International Development Team Detector and Physics Group

Phillip Urquijo The University of Melbourne

ECFA Flavour Meeting June 2022

- Are there new CP-violating phases in the quark sector? (Why is the Universe missing all its antimatter?).
 - Searches for new sources of quark sector CP violation, CKM precision metrology.
 - CPV in the Higgs sector.
- **Does nature have multiple Higgs bosons? (Why is there a mass** hierarchy in fermions? Why do neutrinos have mass?)
 - Semileptonic and Leptonic decays, lepton flavour universality violation.
 - Higgs precision studies.
 - Direct searches for mass generation mechanisms.

Does nature have a L-R symmetry? (With higher mass interactions)

- Rare flavour decays.
- EW couplings, direct searches.
- Is there a dark sector of particle physics at the same mass scale as ordinary matter?
 - Dark photons, axion like particles, and dark matter, via flavour transitions and direct production.

ECFA Flavour Meeting 2022

2

Belle II - LHCb Comparison

Belle II

Higher sensitivity to decays with photons and neutrinos (e.g. $B \rightarrow Kvv, \mu v$), inclusive decays, time dependent CPV in B_{d} , τ physics.

LHCb

Higher production rates for ultra rare B, D, & K decays, access to all b-hadron flavours (e.g. Λ_b), high boost for fast B_s oscillations.

Overlap in various key areas to verify discoveries.

Upgrades

Most key channels will be stats. limited (not theory or syst.). LHCb scheduled major upgrades during LS3 and LS4. Belle II formulating a 250 ab⁻¹ upgrade program post 2030.

Observable	2022	2022	Belle-II	Belle-II	LHCb	Belle-II	LHC
	Belle(II),	LHCb	5 ab^{-1}	50 ab^{-1}	$50 {\rm ~fb^{-1}}$	250 ab^{-1}	300 f
	BaBar						
$\sin 2\beta/\phi_1$	0.03	0.04	0.012	0.005	0.011	0.002	0.003
γ/ϕ_3	11°	4°	4.7°	1.5°	1°	0.8°	0.35°
$lpha/\phi_2$	4°	_	2°	0.6°	_	0.3°	_
$ V_{ub} / V_{cb} $	4.5%	6%	2%	1%	2%	< 1%	1%
$S_{CP}(B \to \eta' K_{\rm S}^0)$	0.08		0.03	0.015		0.007	
$A_{CP}(B \to \pi^0 K_{\rm S}^0)$	0.15	—	0.07	0.04		0.018	—
$S_{CP}(B \to K^{*0}\gamma)$	0.32	—	0.11	0.035	—	0.015	—
$R(B \to K^* \ell^+ \ell^-)^\dagger$	0.26	0.12	0.09	0.03	0.022	0.01	0.009
$R(B \to D^* \tau \nu)$	0.018	0.026	0.009	0.0045	0.0072	< 0.003	< 0.0
$R(B \to D\tau\nu)$	0.034	_	0.016	0.008	_	< 0.003	_
$\mathcal{B}(B \to \tau \nu)$	24%	_	9%	4%	_	2%	_
$\mathcal{B}(B \to K^* \nu \bar{\nu})$	_	—	25%	9%		4%	—
$\mathcal{B}(\tau \to e\gamma) \text{ UL}$	42×10^{-9}		22×10^{-9}	6.9×10^{-9}		3.1×10^{-9}	_
$\mathcal{B}(\tau \to \mu \mu \mu)$ UL	21×10^{-9}	46×10^{-9}	3.6×10^{-9}	0.36×10^{-9}	1.1×10^{-9}	0.07×10^{-9}	5×1

the measurement in the $1 < q^2 < 6 \text{ GeV}/c^2 \text{ bin.}$)

arXiv: 1808.08865 (Physics case for LHCb upgrade II), *PTEP 2019 (2019) 12, 123C01 (Belle II Physics Book), arXiv:2203.11349 (Snowmass: Belle II Upgrade)*

ECFA Flavour Meeting 2022

Phillip URQUIJO

Table 1: Projected precision of selected flavour physics measurements at Belle II and LHCb. (The † symbol denotes

ILC 250 GeV Overview THE UNIVERSITY (MELBOURNE

ECFA Flavour Meeting 2022

ltem	Parameters
C.M. Energy	250 GeV
Length	20km
Luminosity	1.35 x10 ³⁴ cm ⁻² s
Repetition	5 Hz
Beam Pulse Period	0.73 ms
Beam Current	5.8 mA (in puls
Beam size (y) at FF	7.7 nm@250Ge
SRF Cavity G. Q ₀	31.5 MV/m (35 MV/m) Q ₀ = 1x10 ¹⁰

A small beam spot is a linear collider speciality for storing the beams in a ring, the beam-beam interaction has to be much lower, hence much less strong focusing at the IPs.

4

SRF Accelerating Technology

Higgs Factory Physics

- factory, O(1M) Higgs events
- coupling.

sqrt(s) = 250 GeV: Higgs-strahlung (Zh) dominant, peak cross section around 250 GeV ---> Higgs

sqrt(s) = 500 GeV: WW-fusion dominant, improve many couplings, access to Top-Yukawa, Higgs self-

International Development Team

- •2013-Jun 2020: Linear Collider Collaboration LCC und Mandate, governed by Linear Collider Board LCB
- •2014-2018: MEXT appointed ILC Advisory Panel review project, incl. new 250GeV baseline
- •Feb-Jun 2020: LCB proposes International Developme IDT to prepare an ILC-Pre-Lab
- •Aug 2020: ICFA establishes IDT and appoints IDT Execution Board (*)
- •Goal: establish an ILC Pre-Lab within ~2 years. IDT focus ILC realisation, KEK provides support (admin., financial)

	IDT	ILC Pre-Lab						ILC Lab			Lab.	
	PP	P1	P2	P3	P4	1	2	3	4	5	6	7
Preparation CE/Utility, Survey, Design Acc. Industrialization prep.												
Construction												
Civil Eng.												
Building, Utilities	Foll	owin	g a f	^f our-	year	ILC	Pre-	Lab p	ohas	e, IL	C coi	nstru
Acc. Systems	con	tinue	e for	abo	ut te	<mark>n ye</mark>	ars.					
Installation												
Commissioning												
Physics Exp.												

ECFA Flavour Meeting 2022

der ICFA	ICFA						
VS	ILC International Dev	velopment Team					
	Executive B	oard					
ent Team	Americas Liaison Andrew Lankford (UC Irvine) Working Group 2 Chair Shinichiro Michizono (KEK) Working Group 3 Chair Hitoshi Murayama (UC Berkeley/U. Tokyo) Executive Board Chair and Working Group 1 Chair Tatsuya Nakada (EPFL) KEK Liaison Yasuhiro Okada (KEK)						
utive	Europe Liaison - Ste Asia-Pacific Liaison - Ge	inar Stapnes (CERN) offrey Taylor (U. Melbourne)					
sses on	Working Group 1 Working Group 2 Working Pre-Lab Setup Pre-Lab Setup Accelerator Physics						
) 8 9 10 Phys. Exp.	ILC International Development Team publishes the Proposal for the ILC Preparatory Laboratory	Proposal for the ILC Preparatory Laboratory (Pre-lab) International Labor Callelor International Development Team 1 June 2021					
	An international scientific consensus supports an electron-positroe Higgs Factory at the highest-priarity nert collider, and intely construction of the laternational linear Collider (IIC) hosted in Japan is strengtly supported by the international community. Teday, the international offort to malias ILC in Japan took another step forward with the publication of the document titled "Proposa for the ILC. Preparatory Laboratory (Pre-ILD)". This proposal is orepared by the ILC International Development Team (ILC-IDT) and endorsed by the International Committee for Future Acceleratory (ICFA).	Chetren During the propagatory phase of the International Hasen Collifier (ILC) project, all technical development and segmenting design associat for the sheet of ELC construc- tion much be completed, in profile with intergrowmented discussion of processing and sheeting of responsibilities and zero. The IL-Of Propagatory Lebertary (Tzy-leb) is consisted to execute the technical and engineering work and to make the Inter- growmented discussion by providing relevant information upon request. It will be travel on a workfactle preferred processing billion models with a tradeporter leader in Jean. This proposal, propared by the ILO Information Development Team and endered by the Information of Committee in Private Accelerations, describe an					
ction will		organizational framework and work plan for the ProJach. Elaboration, modification and adjustment about he introduced for its implementation, in order to incorporate requirements around from the players community, informations, and governmental authentics interested in the ILC.					
	"The IDT has arbieved the major milestone of completing this proposal, which out ines the organizational framework, an implementation model and a work plan of the Pro-lab", said Tatsaya Nakada, Chair of the IDT Executive Board and Professor Emeritus at Ecole Polytechnique Fildérale de Lausanne (EPEL) in Switzerland	arXiv:2106.00602					
	All the technical development and engineering design needed for the start of the construction of the LC laboratory should be completed during the preparatory phase. In the same period, governmental authorities of interested nations are expected to longe an agreement on the sharing of the cost and responsibilities for the construction and operation of the ILC facility and	1					

Phillip URQUIJO

6

ILC Data Taking Scenario

- First stage: 250 GeV (Higgs factory)
- Second stage: 500 GeV and beyond
 - covers *tth* and *Zhh* (self coupling) production
- Potential to be a GigaZ+ factory (100 fb⁻¹+) in interim

$P = \frac{N_R - N_L}{N_R + N_L}$			$\int {\cal L}$	fraction	n with si	$\operatorname{gn}(P(e^{-}$
		E_{CM} (GeV)	(fb^{-1})	(-+)	(+-)	()
ILC	250	250	2000	45%	45%	5%
ILC	350	350	200	67.5%	22.5%	5%
ILC500		500	4000	40%	40%	10%
Gig	aZ	91.19	100	40%	40%	10%
ILC1000		1000	8000	40%	40%	10%
				siį	$gn(P(e^{-}))$	$, P(e^+)$
				(-,+)	(+,-)	(-,-)
—	lum	minosity $[fb^{-1}]$		40	40	10
GigaZ	$\sigma(F)$	$P_{e^-}, P_{e^+})$ [nb]		60.4	46.1	35.9
	Z e	events $[10^9]$		2.4	1.8	0.36
ZJUXLEP	had	lronic Z events	$ [10^9] $	1.7	1.3	0.25

Phillip URQUIJO

7

Longitu

Different

Indinally polarised beams are a key feature of ILC design
tial cross sections for (relativistic) di-fermion production*:

$$\frac{d\sigma}{d\cos\theta}(e_L^-e_R^+ \to f\bar{f}) = \Sigma_{LL}(1+\cos\theta)^2 + \Sigma_{LR}(1-\cos\theta)^2 + \Sigma_{LR}(1-\cos\theta)^2 + \Sigma_{LR}(1+\cos\theta)^2 + \Sigma_{LR}(1-\cos\theta)^2 + \Sigma_{LR}(1-\cos\theta)^2 + \Sigma_{RR}(1-\cos\theta)^2 + \Sigma$$

*add term $\sim \sin^2 \theta$ in case of non-relativistic fermions e.g. top close to threshold

 Σ_{IJ} are helicity amplitudes that contain couplings g_L , g_R (or F_V , F_A) $\Sigma_{IJ} \neq \Sigma_{I'J'} =>$ (characteristic) asymmetries for each fermion.

- Beam polarisation can probe the SM/BSM chiral structure.
 - **SM**: Z and γ differ in couplings to L-and R-handed fermions.
 - **BSM**: unknown chiral structure from e.g. Z'! - modify L and R t and b couplings.

ECFA Flavour Meeting 2022

of the top quark to the Z boson

8

ILC Detectors

Central tracking with TPC

Highly granular calorimeters

ECFA Flavour Meeting 2022

Detector Perfor....

ILD Interim Design Report arXiv:2003.01116

- Production in separate hemispheres.
 - Charge measurements based on vertex and particle ID information.
- Excellent flavour tagging hinges not only on the **vertex detector** performance, but also from the nano beam spot, 5nm in the vertical, few 100nm in the horizontal.

- - Mass best determined via cross-section scans.
- (Can we probe direct CP quantities?).

- Polarised beams allow to separate the 4 different chirality combinations LeLb, LeRb, ReRb, ReLb.
- The 4 modes can be differently influenced by NP.

R. Pöschl, EPS 2021 arXiv: 1709.04289

Phillip URQUIJO

13

Electroweak top couplings & top Higgs couplings

The two-fermion NP operators that affect top and bottom-quark interactions with vector, tensor, or scalar Lorentz structures can be well constrained with 500 GeV operation.

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \left(\frac{1}{\Lambda^{2}}\sum_{i}C_{i}O_{i} + h.c.\right) + \mathcal{O}\left(\Lambda^{-4}\right)$$

$$\stackrel{10^{2}}{10^{-1}} \stackrel{10^{2}}{10^{-1}} \stackrel{10^{-1}}{10^{-2}} \stackrel{10^{-1}}{10^{-2}} \stackrel{10^{-1}}{10^{-2}} \stackrel{10^{-2}}{10^{-3}} \stackrel{10^{-2}}{C_{qt}} \stackrel{10^{-2}}{C_{qQ}} \stackrel$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \left(\frac{1}{\Lambda^2} \sum_{i} C_i O_i + \text{h.c.}\right) + \mathcal{O}\left(\Lambda^{-4}\right)$$

ECFA Flavour Meeting 2022

Excellent model independent top Higgs coupling precision through ttH production.

 $\varphi^{\dagger}\varphi,$

ECFA Flavour Meeting 2022

Phillip URQUIJO

Large boost of b hadrons ($\langle P_B \rangle \sim 32 \text{ GeV/c}$).

Very well separated b (in opposite hemisphere).

b hadron energy from rest of event \rightarrow good calorimetry and tracking (LEP/SLD ~ 3-5 GeV resolution).

	GigaZ 100 fb ⁻¹	GigaZ+ 1 ab ⁻¹	Belle II 50 ab ⁻¹	LHCb
	7.108	7.109	5.10 ¹⁰	3.10 ¹³
	7.108	7.109	5.10 ¹⁰	3 .10 ¹³
	3.10 ⁸	3.10 ⁹	6.10 ⁸	8.10 ¹²
/on	1.108	1.109		1.10 ¹²
	1.108	1.109		1.10 ¹²
		GigaZ+ for reference only		·

- b produced @Z decay length L~3 mm **Siena 2001**
- pipe, small beam spot (**nano beam spot** at ILC!)

ECFA Flavour Meeting 2022

Christian Haag IEKP b-direction and L_D from vertex detector and tracking —> need good vertex detector, small beam

Zfactory

D* slow pion tracking efficiency

Boost (decay length of a B)

B isolation

Low B-frame momentum (<0.7 GeV) lepton ID

Neutrino reconstruction

Flavour tagging efficiency

EM showers

Ks acceptance (decay inside tracking)

Hermetic acceptance

Trigger

ECFA Flavour Meeting 2022

Belle II \rightarrow Z factory							
30-60%	>90%						
120 µm	3mm						
Overlapping	Highly displaced						
Poor/moderate	Very good						
B tagging	Vertex + energy flow						
LHCb \rightarrow Z factory							
5%	40-80%						
Pileup	Not an issue						
Moderate	Good						
Forward	Barrel/Symmetric						
Finite for hadronic	~100%						

$B \rightarrow D^* | v and | V_{xb} |$

Phys.Lett.B395:373-387,1997

ECFA Flavour Meeting 2022

Belle II: $B \rightarrow D^*$ | v experiment precision limited by efficiency in low hadronic recoil region. (Used in a variety of analyses beyond V_{xb}). Limited access to B_s .

LHCb: Model dependent, does not calculate absolute BR.

Z-factory: Efficiency flat even for slow pions. Good potential for wide variety of missing energy analyses due to clean events.

	b→clv, V _{cb}	b→ulv, V _{ub}
В	$B \rightarrow D^{(*)} v$	B→πΙv, B→ρΙ
Bs	$B_s \rightarrow D_s^{(*)} v$	$B_s \rightarrow K^{(*)} v$
Bc	$B_c \rightarrow \eta_c \mid v, B_c \rightarrow J/\psi \mid v$	$B_c \rightarrow D^{(*)} v$
۸b	$\Lambda_b \rightarrow \Lambda_c^{(*)} \mid v$	$\Lambda_b \rightarrow p \mid v$

- Belle II: Challenging for lepton ID at low vertices in hadronic B decays.
- inclusive and exclusive.

ECFA Flavour Meeting 2022

Time dependent CPV $S_{CP}(B \rightarrow J/\psi K_S)$

- CDF (February 1999)
 - Sin $2\Phi_1 = 0.79^{+0.41}_{-0.44}$
 - From 400 $B \rightarrow J/\psi K_S$
- ALEPH (November 1999)
 - Sin $2\Phi_1 = 0.82^{+0.84}_{-1.05}$

Phys.Lett.B 492 (2000) 259-274

• From 23 B \rightarrow J/ ψ K_s in 4 million hadronic Z events.

Very clean, could be competitive with a B factory

Belle II: Tag side vertex resolution and signal Δt resolution (both limited by lower boost).

LHCb: Lower K_S acceptance (factor ~10 reduction) and high dilution in b-tagging.

ECFA Flavour Meeting 2022

Phillip URQUIJO

20

GigaZ(+) channels

- Difficult to say what open questions we will have after Belle II and LHCb mid 2030s.
- No doubt the detector and Z-factory environment makes for an excellent B-factory. (The question is about luminosity at that region ... a TeraZ would be amazing)
 - There may also be more to exploit on polarisation.

ve after Belle II and LHCb mid 2030s. nent makes for an excellent B-factory. on ... a TeraZ would be amazing) ation.

 $b \rightarrow s \tau \tau X$, $b \rightarrow c \tau X$, $b \rightarrow vv X$ in b-hadron decays (not just B). Excellent b/c/tau vertex separation.

Explores a relatively new areas. No trigger effects, allowing exploration of full decay width.

Flat efficiency in Dalitz space (see slow pion example) - high precision strong phase measurements in Φ_3 . Good for inclusive measurements via sum-of-exclusive.

Lifetimes in rare decays, Time dependent CPV in a variety of mode with neutrals.

Conclusion (top and beauty prospects)

- ILC IDT has submitted a pre-lab proposal for the ILC.
 - Anticipated 4 year pre-lab phase.
- 3 main stages currently planned: 250 GeV, 350 GeV, 500 GeV.
 - Polarised beams.
 - Possibility for GigaZ operation, and for 1 TeV.
- The target is to search for NP through precision at high energy: in addition to heavy flavour Higgs couplings, there are excellent opportunities to study EW couplings of heavy quarks.
- The flavour and low energy new particle program is more nascent but could help inform detector and accelerator requirements.

Backup slides

References

- Proposal for the ILC Preparatory Laboratory (Pre-lab) arXiv:**2106.00602**
- ILC Study Questions for Snowmass 2021 arXiv:**2007.03650**
- International Large Detector: Interim Design Report arXiv:2003.01116
- Tests of the Standard Model at the International Linear Collider arXiv:1908.11299
- The International Collider. A Global Project arXiv:1903.01629
- The ILD Detector at the ILC arXiv:1912.04601
- Physics Case for the International Linear Collider arXiv:1506.05992

Machine parameters

Quantity	\mathbf{Symbol}	Unit	Initial	\mathcal{L} Upgrades	Energy U	Jpgrades
Centre of mass energy	\sqrt{s}	GeV	250	250	500	1000
Luminosity	$\mathcal{L}~10^{34} \mathrm{cm}$	$\mathrm{n}^{-2}\mathrm{s}^{-1}$	1.35	$2.7 \ / \ 5.4$	1.8 / 3.6	4.9
Polarisation for $e^{-}(e^{+})$	$P_{-}(P_{+})$		80%(30%)	80%(30%)	80%(30%)	80%(20%)
Repetition frequency	$f_{ m rep}$	Hz	5	5 / 10	5	4
Bunches per pulse	$n_{ m bunch}$	1	1312	2625	$1312 \ / \ 2625$	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	\mathbf{ns}	554	366	554/366	366
Beam current in pulse	$I_{ m pulse}$	${ m mA}$	5.8	5.8	5.8 / 8.8	7.6
Beam pulse duration	$t_{ m pulse}^-$	$\mu { m s}$	727	961	727/961	897
Average beam power	P_{ave}	MW	5.3	10.5 / 21	10.5 / 21	27.2
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathbf{x}}$	$\mu { m m}$	5	5	10	10
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	$\mathbf{n}\mathbf{m}$	35	35	35	30
RMS hor. beam size at IP	$\sigma^*_{\mathbf{x}}$	$\mathbf{n}\mathbf{m}$	516	516	474	335
RMS vert. beam size at IP	$\sigma_{ m v}^{*}$	$\mathbf{n}\mathbf{m}$	7.7	7.7	5.9	2.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%	58.3%	44.5%
Energy loss from beamstrahlung	$\delta_{ m BS}$		2.6%	2.6%	4.5%	10.5%
Site AC power	$P_{ m site}$	MW	111	138 / 198	$173 \ / \ 215$	300
Site length	$L_{ m site}$	${ m km}$	20.5	20.5	31	40