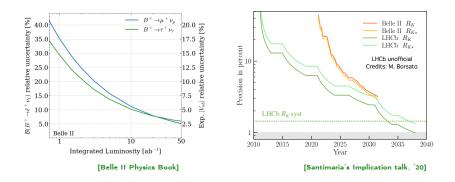
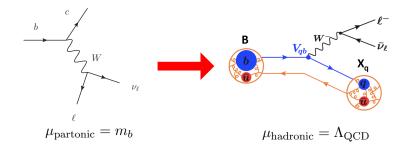
Theory challenges for Flavour physics at Higgs and EW factories


Marzia Bordone

ECFA WG1-FLAV: 1st Meeting

29.06.2022


Precision Era in Flavour Physics

Lessons from current measurements

- New physics in flavour processes lives at scale $\Lambda > \mathcal{O}(\text{TeV})$
- It is expected to be (sub)percent deviations in tree-level and loop-mediated processes
 - \Rightarrow Larger effects are also possible and still not excluded by low and high energy flavour data
- The flavour structure of New physics couplings can be complex
 - $\Rightarrow\,$ If we are driven by the flavour puzzle, we expect new physics to affect more the 3rd generation
- Correlations between different modes are essential for model building development

The drawback of flavour

Non-perturbative effects are calculated using various techniques

- Sum Rules and their variants still have large uncertainties, especially when predicting branching fractions
 - \Rightarrow Define observables free of hadronic uncertainties
- Lattice QCD calculations exist/ are ongoing, ultimate precision is still not reached
 - \Rightarrow Matter of time and computational power!

Prospects at Z factories

Channel	Belle II	LHCb-U1a	FCC-ee
B^0 , $ar{B}^0$	$\sim 5 \times 10^{10}$	$\sim 6 \times 10^{13}$	$\sim 6.2 \times 10^{11}$
B^{\pm}	$\sim 5 \times 10^{10}$	$\sim 6 \times 10^{13}$	$\sim 6.2 \times 10^{11}$
B^0_s , $ar{B}^0_s$	$\sim 6 \times 10^8$	$\sim 2 \times 10^{13}$	$\sim 1.5 \times 10^{11}$
B_c^{\pm}	_	$\sim 2 \times 10^{11}$	$\sim 4 \times 10^9$
Λ_b , $\bar{\Lambda}_b$	_	$\sim 2 \times 10^{13}$	$\sim 1.30 \times 10^{11}$

[Archilli, Altmannshofer, '22]

- Statistics in between Belle II and LHCb, but
 - \Rightarrow good reconstruction efficiency
 - \Rightarrow good resolution on missing momentum
- b-hadrons are more boosted than at Belle II
 - ⇒ More accurate tracking reconstruction

Semileptonic decays

Leptonic $B_q \to \ell \nu$ decays

Advantages w.r.t. Semileptonic B_q decays

- Cleaner from a theoretical point of view
 - \Rightarrow No form factors are needed
 - $\Rightarrow\,$ Standard Model decay constant are known with high precision from Lattice QCD

Caveat:

- structure dependent QED terms can be important with high statistics
 - \Rightarrow Well discussed in Belle II and LHCb environment, worth re-discussing in a new environment and with new analysis strategy

Lepton Flavour universality tests

$$\frac{\mathcal{B}(B_q \to \tau \bar{\nu})}{\mathcal{B}(B_q \to \mu \bar{\nu})} = \frac{m_\tau^2 [1 - (m_\tau / m_{B_q})^2]^2}{m_\mu^2 (1 - [m_\mu / m_{B_q})^2]^2} [1 + \mathcal{O}(\alpha \log(m_\tau / m_\mu))]$$

Measurement of CKM ratios


$$\frac{\mathcal{B}(B_c \to \ell \bar{\nu})}{\mathcal{B}(B \to \ell \bar{\nu})} = \frac{|V_{cb} f_{B_c}|^2}{|V_{ub} f_B|^2}$$

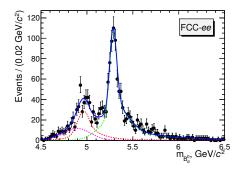
Drawbacks:

- $B_q \to \mu \nu$ is suppressed wrt $B_q \to \tau \nu$ of a factor $m_\mu^2/m_\tau^2 \sim \mathcal{O}(10^{-3})$
- $B_q \to \tau (\to \mu \nu \bar{\nu}) \bar{\nu}$ is an important background to $B_q \to \mu \nu$
 - \Rightarrow Cuts in kinematical variables should help control it

[MB, Isidori, van Dyk, '16, Alonso, Kobach, Camalich, '16]

New Physics in $B_c \rightarrow \tau \bar{\nu}$

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(B \to D^{(*)}\mu\bar{\nu})}$$

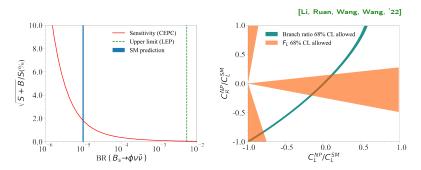

Rare decays

Modes with a τ pair in the final state

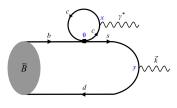
• Current constraints on $b \to s \tau \tau$ allow for large NP contributions

$$\frac{B_s \to \tau \tau|_{\rm SM}}{B_s \to \tau \tau|_{\rm exp}} \sim \mathcal{O}(10^4)$$

• Belle II and LHCb plans to reduce the gap to ${\cal O}(10^3)$ at the end of Upgrade II



- ~ 1000 reconstructed $B \to K^* \tau \tau$
- Similar projections for $B \to K \tau \tau$
- Possible measurements of these modes, not only upper limits
- Angular coefficients are also measurable


[Kamenik, Monteil, Semkiv, Vale Silva, '17]

Modes with neutrinos in the final state

- Modes with neutrinos are important to distinguish among heavy new physics states
- Expected sensitivity at Belle II on $B \to K^{(*)} \nu \bar{\nu} \sim \mathcal{O}(10\%)$
- If the reconstruction efficiencies don't change, we can expect to reduce the sensitivity to $\mathcal{O}(2-3\%)$

Data driven determination of non perturbative physics

- The computation of non-perturbative effects in the resonant region is of utmost importance
- These effects are universal among the three generations
- Data driven methods allow for the extraction of non-perturbative parameters
- Can we learn something more?

- Large data samples allow precise measurement of $B^0 \to K^* e^+ e^-$ branching ratio and angular distribution
- The comparison with corresponding muon mode determines the size of the non perturbative physics
- It also provides a test of LFU

Decay mode	$B^0 \to K^* e^+ e^-$
Belle II	~ 2000
LHCb Upgrade	~ 20000
FCC-ee	~ 50000

Charm decays

Charm physics

• At FCC-ee, $\sim 6\times 10^{11}~c\bar{c}$ pairs are expected

Channel	Z-factory	
D^0	$\sim 70 \times 10^{10}$	
D^{\pm}	$\sim 30 \times 10^{10}$	
D_s^0	$\sim 10 \times 10^{10}$	
Λ_c	$\sim 10 \times 10^{10}$	

- $\bullet\,$ Roughly a factor $10\,$ more statistics than Belle II
- LHCb Upgrade II overcomes this estimates largely
- FCC-ee can contribute in modes with neutrino in the final states

$D \to h \nu \bar{\nu}$

- Short distance contribution is suppressed by CKM and coupling $Z \to \nu \bar{\nu}$
- Long distance contributions from light-resonances can be accounted for in naive factorisation using non-leptonic data

 \Rightarrow they are also estimated to be very small

[Burdmana, Golowichb, Hewettc, Pakvasad, '02]

$$\mathcal{B}(D \to h \nu \bar{\nu}) \sim 10^{-13} - 10^{-15}$$

[Bause, Gisbert, Golz, Hiller, '20]

					[, 6612, 111161, 1
$h_c \to F$	\mathcal{B}_{LU}^{max}	\mathcal{B}_{cLFC}^{max}	\mathcal{B}^{max}	$N_{\rm LU}^{\rm max}/\eta_{\rm eff}$	$N_{\rm cLFC}^{\rm max}/\eta_{\rm eff}$	N^{\max}/η_{eff}
	$[10^{-7}]$	$[10^{-6}]$	$[10^{-6}]$			
$D^0 \to \pi^0$	6.1	3.5	13	47 k (395 k)	270 k (2.3 M)	980 k (8.3 M)
$D^+ \rightarrow \pi^+$	25	14	52	77 k (650 k)	440 k (3.7 M)	1.6 M (14 M)
$D_s^+ \to K^+$	4.6	2.6	9.6	6 k (50 k)	34 k (290 k)	120 k (1.1 M)
$D^0 \rightarrow \pi^0 \pi^0$	1.5	0.8	3.1	11 k (95 k)	64 k (540 k)	230 k (2.0 M)
$D^0 \rightarrow \pi^+ \pi^-$	2.8	1.6	5.9	22 k (180 k)	120 k (1.0 M)	450 k (3.8 M)
$D^0 \to K^+ K^-$	0.03	0.02	0.06	$0.2{\rm k(}1.9{\rm k)}$	$1.3 \mathrm{k} (11 \mathrm{k})$	$4.8 \mathrm{k} (40 \mathrm{k})$
$\Lambda_c^+ \rightarrow p^+$	18	11	39	14 k (120 k)	82 k (700 k)	300 k (2.6 M)
$\Xi_c^+ \to \tilde{\Sigma}^+$	36	21	76	28 k (240 k)	160 k (1.4 M)	590 k (5.0 M)
$D^0 \to X$	15	8.7	32	120 k (980 k)	660 k (5.6 M)	2.4 M (21 M)
$D^+ \rightarrow X$	38	22	80	120 k (1.0 M)	680 k (5.8 M)	2.5 M (21 M)
$D_s^+ \rightarrow X$	18	10	38	24 k (200 k)	140 k (1.1 M)	500 k (4.2 M)

NP contributions should be easily found with FCC-ee statistics

τ decays

Status of τ physics

Channel	LEP	Belle II	FCC-ee
$\tau^+ \tau^-$	$\sim 10^5$	$\sim 45 \times 10^9$	$\sim 170 \times 10^9$

Advantages of a Z factory: higher boost of the $\tau {\rm s}$

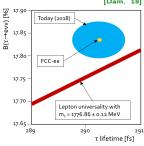
- Easier lifetime measurement
- better quality of identification of final state particles

Status:

- only modest improvement by Belle II
- branching fraction LEP measurements are unchallenged

Leptonic branching fractions:

$$\Gamma_{\ell \to \ell'} \equiv \Gamma[\ell \to \ell' \nu_{\ell'} \bar{\nu}_{\ell}] = \frac{G_{\ell\ell'}^2 m_{\ell}^5}{193 \pi^3} f(m_{\ell'}/m_{\ell}) (1 + \delta_{\rm RC}^{\ell\ell'})$$

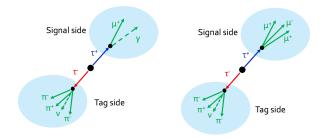

- Electroweak corrections to $G_{\ell\ell'}$ are known
- QED corrections are known up to $lpha_{
 m EM}^3$

[Fael, Schönwald, Steinhauser, '20]

 \Rightarrow match the expected precision at FCC-ee $\sim \mathcal{O}(10^{-6})$

• Measurement of LFU ratios possible below the $\mathcal{O}(0.1\%)$

τ properties


- Red band obtained under hypothesis of universality
- Only limitation is the measurement of the τ mass
 - \Rightarrow no substantial improvement at FCC-ee

Summary

- The possibilities for flavour physics at the e^+e^- machines are numerous
- High statistics and detector efficiency allow to have large statistics in many channels
- There are questions open that need to be addressed:
 - QED effects need to be estimated at equal precision as the experimental sensitivity
 - Backgrounds can be estimated theoretically to propose interesting cuts to experimental analysis
 - High sensitivity helps for data-driven determination of non-perturbative quantities
- Collaboration of theory and experimental community is of utmost importance!

Appendix

Charged Lepton Flavour Violation

• Sensitivity on the same level of the ones at Belle II