Introducing RUEDI A Proposed Relativistic Ultrafast Electron Diffraction & Imaging Facility for the UK

Julian McKenzie (on behalf of the RUEDI team) IOP PABG Annual Conference

26th July 2022, Liverpool

What is RUEDI?

A national user facility using MeV electrons for imaging and diffraction on ultrafast timescales

Transformative Science Themes Accelerating UK Technologies

- Dynamics of Chemical Change
- Materials in Extremes
- Quantum Materials & Processes
- Energy Generation, Storage and Conversion
- In Vivo Biosciences

Engineering and Physical Sciences Research Council

World leading advances in accelerator, lens, operando stages and detector designs coupled to advances in artificial intelligence

Electron Diffraction + Microscopy

- Relativistic Ultra-fast Electron Diffraction & Imaging
- Facility for Structural Dynamics on the Femtosecond Timescale
- RUEDI allows the evolution of structural changes in materials to be observed through time-resolved pump-probe experiments
- EPSRC "mid-range" national facility sited at Daresbury Laboratory

Going from keV to MeV

- Greater penetration depth (thicker samples)
- No velocity mismatch as $\beta \approx 1$
- Electron wavelength below atomic level → direct observation of movement of atoms
- Less multiple scattering and "real" flat Ewald-sphere
- Much reduced space-charge effects $(1/(\beta^2\gamma^3))$ leads to greater spatial-temporal resolution, more electrons per pulse

60 keV UED

3 MeV UED

Images from BNL

Existing MeV-UED Facilities Worldwide:

SLAC

RF Deflector

. . . .

Shanghai

(a) und by the second second

Osaka University

KAERI

RUEDI

objective lens

RF Gun

What Will Make RUEDI Unique?

- Combining MeV-UED with MeV UEM
- Imaging dynamics with single electron precision
- Operando temp, pressure, liquid, mechanical, optical, full rotation
- Integrated AI for Low-signal image analytics
- RUEDI Ecosystem (Hub and Spoke)
- RUEDI Ecosystem combining main MeV instrument with smaller facilities at partner institutions around the country

 Leveraging partners expertise in instrumentation, imaging, ultrafast methods, lasers, materials science, structural biology

Funding + Timescales

- UKRI Infrastructure Fund preliminary activity approved
- EPSRC National Facility
- Conceptual Design Report due end 2022
- Technical Design Report due end 2023

~£40M, 3 year construction project starting in 2024

Awaiting next stage Infrastructure Funding

Leveraging UK Research Infrastructures

-the core team developing the facility

The Materials Innovation Factory

Harwell Campus Hub

Daresbury Laboratory

Cockcroft Institute

Negotiations underway to link access modes and research areas with national institutes and facilities

Science Theme Meetings

- "Town Hall" meetings being arranged for each of the science themes
- More info and slides from past events on: <u>http://www.ruedi.uk/events</u>
- Scientific Summary Report on Energy Generation, Conversion and Storage to be uploaded soon
- Sign up to mailing list on website for updates on future events

Coming up

Past events

2022-07-21 09:00 am

MATERIALS IN EXTREMES SCIENTIFIC THEME TOWN HALL EVENT

Materials in Extremes

Venue: Cockcroft Institute, Daresbury, Cheshire

2022-06-13

ENERGY SYSTEMS SCIENTIFIC THEME TOWN HALL EVENT

Ultrafast Energy Materials & Energy Storage

Venue: Hope Street Hotel, Liverpool

In-vivo Biosciences, 26th September
 Quantum Materials, September TBA
 Chemical Change, September TBA

Projects from the Energy Town Hall

4 demonstration projects with wide-ranging applicability

- Photocatalysis
 - Conversion efficiency across full reaction
- Hybrid Solar Cells
 - Optical absorption and defect formation
- Batteries
 - Degradation linked to transport at solid-liquid interface
- Glass Systems (nuclear)
 - Stability of structures under applied conditions

Leveraging STFC Daresbury Expertise

Design, build, and operation of particle accelerator facilities

Femtosecond photoinjector development

MeV ED experience

Instrument Design Principles

- RUEDI must be a reliable and robust user facility
- RUEDI should be a state-of-the-art facility as far as possible without compromising reliability
- RUEDI should measure key parameters shot-by-shot and make them available to users as far as reasonably practical
- The RUEDI design should leave scope for upgradability
- RUEDI should strive to be an environmentally sustainable facility

Sustainability: Accelerator Impact Review – Lifecycle analysis

- Detailed review of the climate impact of accelerator activities
- Where are the Big Sources of emissions?
 - Manufacturing? Steel / Copper / Aluminium / Concrete
 - Operations? Running RF and magnet systems. Cooling & AC
 - Disposal? End of life of components
- How could we reduce these for the biggest impact?
 - Using different materials

14

- Smart powering schemes
- RUEDI is our 'model facility' for this exercise
- Consider wider applicability for other accelerators too
- Figure of merit should be kgCO₂e per "delivered unit"
 - So at the end, we should have a database listing carbon emissions for components in every area
- Look at the big picture; not every gram of CO₂ not a bean-counting exercise!

ASTeC

Sustainable

Accelerators

Task Force

Modes of Operation

#	Purpose	Electron beam energy	Electrons per bunch	Temporal resolution	Spatial resolution	Spot size
1	Imaging (higher resolution)	2 MeV	10^6	Few ps	<1nm	
2	Imaging (ultra-fast)	2 MeV	10^6	<800 fs	~10nm	
3	Diffraction	4 MeV	10^6	100 fs		100um
4	Diffraction (low-charge)	4 MeV	10^4	10 fs		10um
5	Diffraction (Streaking*)	4 MeV	10^7	10 fs		100um

*streaking mode is single-shot, time-resolved, where the time information implanted onto transverse plane via a deflector/streaker

Range of pump laser wavelength/durations/intensities All modes limited to 100Hz repetition rate *(with potential future upgrade to 1kHz)*

RUEDI Schematic v2.0

Design options to be studied and presented in CDR

Electron Gun

- S-band normal conducting RF gun
- Experience from CLARA design
- Dark current the main issue
 - Potentially larger charge than photoemitted beam!
 - Can swamp, interfere and distort images
- Design changes to lower dark current
 - Increase from 1.5 to 2.5 cell gun, lower field for same beam energy
 - No cathode interchange to reduce high field areas which produce more DC
 - Overcoupling for shorter RF pulse

Gun peak field [MV/m]

Dark current

Figure 1: Measured dark charge vs. gradient for a $4.8\mu s$ long rf pulse at REGAE.

1.5 cell
 2.5 cell

Electron Beam Transport - Microscopy

Resolution limits:

$$d = \sqrt{(\lambda/\beta)^2 + (C_s \beta^3)^2 + (C_c \beta \delta \gamma/\gamma)^2}, \qquad (1)$$

where β is the objective aperture collection semiangle and $\delta \gamma / \gamma$ is the relative beam energy spread.

 $\beta \sim 1 mrad$

Cs ~ 10mm, spherical aberration coefficient *Cc* ~ 10mm, chromatic aberration coefficient For 1nm resolution, need <10⁻⁴ relative energy spread

- Possible energy filter in chicane/alpha/omega magnet
- RF dechirper cavity
 - Also used to decelerate from 4 to 2 MeV

Imaging Lens Design

Objective lens is the key to whole system

Round lenses/quadrupoles/deflectors – emittance, astigmatism, aberrations, pulse broadening

Samples inserted into middle of magnet (red arrow)

Consultation with leading EM producer – round lens saturates at ~ 2 MeV

Beam Transport - Diffraction

 Aim to provide ultrashort bunches with small time of arrival jitter

- Laser to RF timing jitter leads to time of arrival jitter at the exit of the gun
- We can tune the R56 of the magnetic transport line to cancel this initial timing jitter at the position of the sample
- The space charge forces will change particles energy along the bunch, allowing them to be compressed with the same R56

Ultrafast Diffraction Beamline

- More general purpose sample chamber to take same sample stages as imaging beamline, full goniometry, solid, liquid, gases, cryogenics
- Cavity based Beam Arrival Monitors
- Bunch length monitoring via RF Transverse Deflecting Cavity + THz

 Option for detector with hole to allow shot by shot measurements on non-diffracted beam

RU

Laser system outline

Ultrafast dynamics vs Pump laser parameters

Some examples, doesn't cover all applications!

Conceptual Laser System

<u>e- Beam Probe</u>

LAM: Laser Arrival Monitor, TC-BOCX: Two-Colour balanced optical cross-correlator

Summary

- 2-year design process underway Funding by UKRI Infrastructure Fund
- CDR to be published at end of this year
- 5 Science Themes cases progressing:
 - Dynamics of Chemical Change
 - Materials in Extremes
 - Quantum Materials & Processes
 - Energy Generation, Storage and Conversion
 - In Vivo Biosciences

Visit <u>www.ruedi.uk</u> for more info

Acknowledgements

- Nigel Browning
 Ian Robinson

- Jan Nugara
- Will Bryan
- Simon Maskell
- B. Layla Mehdi
- Sven Schroeder
- Carsten Welsch
- Oznur Apsimon
- Gwyndaf Evans
- Dwayne Miller

Imperial College London

- Angus Kirkland
 Jasper Van Thor
- Yoshie Murooka Lee Kelsall
 - Alberto Acuto
 - and more...

UNIVERSITY OF LIVERPOOL

- Tim Noakes
- Mike Ellis
- Jim Clarke
- Boris Militsyn
- Alan Wheelhouse
- Mark Roper
- Nirav Joshi
- Yuri Saveliev
- Clive Hill
- Graham Cox
- Rachael Buckley Ed Snedden
- Ben Hounsell
- Joe Crone
- Hywel Owen

- James Jones
- Bruno Muratori and more...
- Omair Ghafur
- Storm Mathisen

Mitchell Kane

Science and Technology **Facilities** Council

- Tom Pacev
- Louise Cowie
- Russell McLean
- Anthony Gilfelloń
- Andy Moss
- Conor Jenkins
- - - Ben Shepherd
 - Frank Jackson
 - Tom Jones

Relativistic Ultrafast Electron Diffraction & Imaging

world leading advances in accelerators, lenses, operando stages and detectors coupled to artificial inteligence.

Thank you for your attention!

