

Millimeter-wave undulators for compact XFELs

<u>Liang Zhang</u>^{1,3}, Jim Clarke^{2,3}, Craig R. Donaldson ^{1,3}, Craig W. Robertson ¹, Colin G. Whyte ¹, and Adrian W. Cross ^{1,3}

liang.zhang@strath.ac.uk

¹Department of Physics, SUPA, University of Strathclyde ²ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury ³The Cockcroft Institute, Sci-Tech Daresbury

Free-electron Laser (FEL) University of Strathclyde

Wavelength of output radiation

$$\lambda = \frac{\lambda_u}{2n\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right)$$

$$K = \frac{|e|_{\lambda_u}B_u}{2\pi mc} = 0.934B_u[T]\lambda_u[cm]$$

Compact X-FEL relies on

- High-gradient accelerators
 - Traditional accelerators: higher frequency (X, Ka-band accelerators)
 - Novel accelerators: DLA, PWFA, LWFA

ABP

• Short wavelength undulator $(\lambda_u \downarrow \text{ enables } \gamma \downarrow \text{ for same } f)$

Uniqueness: Visualising ultrafast (fs) processes at the quantum scale (<1nm)

Timeliness: UK-XFEL science case made to STFC, UK in Oct. 2020 with UK XFEL CDR commissioned (2022 to 2025)

Bolko Beutner, Introduction to Free Electron Lasers;
 P. G. O'Shea, Science, 292 (5523), pp. 1853-1858, 2001.
 A. Ghaith, Physics Reports 937(6), 2021;
 https://www.youtube.com/watch?v=-kdqVuJxkrs

State-of-the-art PMU

	SwissFEL (Aramis)	Europe XFEL	
Structure	Planar hybrid	Planar hybrid	
Material	NdFeB	NdFeB	
K	1.2	3.0	
Period	15 mm	26 mm	
Peak field	0.85 T	1.24 T	
Gap type	Variable	Variable	
Gap	4.7 mm	6 mm	

Undulators

- Permanent magnet undulators
- Cryogenic permanent magnet undulators
- Superconducting undulators
- Exotic undulators (Microwave undulator, Optical undulator)

University of

Strathclyde

1.7mm period allows for generating soft X-ray radiation using a 250 MeV beam.

Moderate K value for 1.7mm period MU mitigated by ³ 588 periods per meter.

Microwave undulator (MU)

(a) Microwave Undulator

(b) Magnetic Undulator

$$\frac{E_x = E_0 \sin(2\pi z/\lambda_g) \cdot \sin(\omega t)}{B_y = B_0 \cos(2\pi z/\lambda_g) \cdot \cos(\omega t)}$$
$$F_x = -e(E_x - v_z B_y)$$

$$\begin{split} B_z &= B_0 sin(2\pi z/\lambda_u) \\ F_x &= ev_z B_y \end{split}$$

NLP, Japan 1983: Frequency 2.856 GHz, Q 7100, λ_u 55.0 mm, K 0.24. Klystron power 300kW. λ 400nm @143MeV beam.

[1] T. Shintake, Jpn. J. Appl. Phys. 22, 844, 1983.[2] S. Tantawi, Phys. review letters 112, 164802, 2014.

SLAC 2014: Frequency 11.424 GHz, Q 91000, λ_u 13.9 mm, K 0.69. Klystron power 50MW. Tunable radiation 400-600nm with 50 MeV to 70 MeV beam, and seeded coherent harmonic generation (SCHG) 160-240nm @ 120 MeV beam

Features of MMWU

Features

- Shorter undulator period, lower beam energy;
- Large aperture to reduce wakefield;
- Fast control of polarization and magnetic field (electrical vs mechanical);
- Resilient to damage by radiation (copper vs rare-earth material).

Vision

Demonstrate soft X-ray radiation using the FEBE beam

MU Research at UoS

ABP

EM wave: traveling wave and standing wave

Requirements for the waveguide mode:

- $\varsigma \approx Z_w$, Overmoded waveguide
- Low loss, minimise field strength at wall
- Maximise B_u , maximise field strength at electron path
- TE-like mode ($E_z \approx 0$), maximise transverse field

 $F_{x} = \frac{eE_{0}}{2} \left(\frac{\varsigma}{Z_{w}} + 1 \right) \cos \left[2\pi z \left(\frac{1}{\lambda_{0}} + \frac{1}{\lambda_{g}} \right) \right]$ $+\frac{eE_0}{2}\left(\frac{\varsigma}{Z_{\rm w}}-1\right)\cos\left[2\pi z\left(\frac{1}{\lambda_0}-\frac{1}{\lambda_{\rm g}}\right)\right]$

	Cavity-type undulator	Flying-type undulator	
Microwave source	Medium power, long pulse microwave source, 30 MW, 2 µs	High power, short pulse microwave source, 800 MW, 10 ns	
Field stability	Excellent	Tapered field due to loss	
Phase accuracy	Excellent	Require phase locking	
Cavity-	type undulator based	Flying-type undulator based	

MU Research at UoS

- Design and optimize the undulator structure based on low-loss quasi-optical corrugated waveguide. Inner Diameter of 16.2mm, Length of 1m, *K* peak of 0.5 @50MW, 36GHz, 2µs pulse duration.
- Scalable (frequency and cavity length) design for the coupler structure
- Particle trajectory simulation in the MU

Manufacture of the MU

Evaluate the different methods of manufacture of a short section of MU and measure performance using a Vector Network Analyser (VNA).

Frequency (GHz)

W-band MMMU

Frequency (GHz)	94.0	Q factor	47800
λ_0 in free space (mm)	3.19	Input power (MW)	2.5
Undulator period λ_u (mm)	1.72	Peak Ex on axis (V/m)	2.43E8
Waveguide radius (mm)	3.0	B_u (T)	0.81
Min. tunnel radius (mm)	1.80	Electric field at wall (V/m)	3.3E6
Corrugation period (mm)	1.38	Κ	0.13
Overall length (mm)	200	λ output (nm)	3.6nm (342eV)

Bragg reflector to reduce the mm-wave power leakage and maintain large aperture.

With copper grown. Aluminium to be dissolve away.

[1] P. McElhinney, et. al, IEEE Trans. Electron Devices, 64(4), pp. 1763-1766, 2017.
[2] F. Toufexis, et. al, Phys. Rev. Accel. Beams, 22, 120701, 2019.

Ongoing work

- Step tuning the undulator period based on longitudinal mode index $HE_{1,1,N}$
 - Broadband Bragg reflector
 - Broadband/multi-frequency drive sources (5% bandwidth)
- Higher order mode HE₁₂
 - Larger radius (2.5 times)
 - Lower field strength at the wall (4 times reduction)
 - Complicated coupler structure

Conclusion

- Millimetre-wave undulator enables
 - X-FELs using the 250MeV FEBE beam at Daresbury Lab
 - The MW-level millimetre-wave source developed for the MU can be used for high-gradient accelerator research
 - Enhances the search for axion-like-particles (ALPs) by increasing the event rate of the detection system

X-FEL radiation with FEBE

mm-wave/THz acceleration

axion detection

4m

Bucking

[1] E. Nanni, SLAC, HG 2021.
[2] G. Linde, IEEE Trans. Aerospace and Electronic Systems, 44(3), pp. 1102-1117, 2008.
[3] M. A. K. Othman, et. al, Appl. Phys. Lett. 117, 073502 (2020).
[4] L.M. Capparelli, Physics of the Dark Universe, 12 (37-44), 2016.

I would like to thank the Science and Technology Facilities Council (STFC) U.K., Cockcroft Phase 4 grant ST/V001612/1 for supporting this research.

Thank you for attention! I'd be happy to answer any questions

