Institute of Physics Particle Accelerators and Beams Annual Conference *Liverpool, 25th-26th July 2022*

Terahertz-driven acceleration and manipulation of relativistic electron beams

Morgan T. Hibberd The Cockcroft Institute & The University of Manchester

Representing the Terahertz Acceleration Group

The University of Manchester

Terahertz acceleration group @ The Cockcroft Institute

Advantages of THz accelerators

- High field strengths possible (100 MV/m to >GV/m)
- Wavelength allows easy fabrication of structures
- Oscillation period well-matched to typical bunch duration

Advantages of THz accelerators

- High field strengths possible (100 MV/m to >GV/m)
- Wavelength allows easy fabrication of structures
- Oscillation period well-matched to typical bunch duration

Advantages of THz accelerators

- High field strengths possible (100 MV/m to >GV/m)
- Wavelength allows easy fabrication of structures
- Oscillation period well-matched to typical bunch duration

Advantages of THz accelerators

- High field strengths possible (100 MV/m to >GV/m)
- Wavelength allows easy fabrication of structures
- Oscillation period well-matched to typical bunch duration

Short enough for fs-scale control \rightarrow Ultrafast bunch manipulation

Long enough for significant charge capture \rightarrow 10-100 pC bunch charge

Challenges for THz accelerators

- Phase-velocity matching and group walk-off
- Broadband pulse dispersion
- High-field narrowband sources

Terahertz-driven interactions: Relativistic electron beams

Terahertz dielectric-lined waveguide

Narrowband terahertz source development

Periodically-poled lithium niobate wafer-stacks

- \rightarrow Custom-built large-area narrowband THz sources
- \rightarrow Developed on the concept by:
 - F. Lemery et al. Commun. Phys. 3, 150 (2020)

10

Time [ps]

20

15

25

- Large-area wafers are commonly manufactured
- Inexpensive compared to bulk PPLN crystals
- Customisable frequency, bandwidth, pulse-shaping
- High-energy narrowband source up to mJ-level

Source developed for CLARA Run 2

- High-power TW laser system
- Up to 1000x more THz pulse energy compared to previous run

CLARA test facility @ Daresbury Laboratory

Compact Linear Accelerator for Research and Applications

Bunch parameters

Experimental setup in Beam Area 1

Terawatt laser Pulse energy: 800 mJ (max 300 mJ to BA1) Pulse length: 50 fs Wavelength: 800 nm Repetition rate: 10 Hz

THE

Laser and THz optics outside chamber

THz-electron interaction point inside vacuum chamber

Experimental parameters

CLARA machine operated with different bunch configurations

- \rightarrow Bunch lengths from 200 fs up to 6 ps (FWHM)
- \rightarrow With varying chirp and energy spread
- → Bunch charge from 2 100 pC

THz source controlled for desired bunch manipulation

- \rightarrow Pulse energy from 100 nJ to >100 μ J
- \rightarrow Injection timing
- → Number of cycles (i.e. bandwidth)

Demonstrations of THz-driven bunch manipulation

On-crest acceleration of sub-ps bunches

 \rightarrow Bunch with single (half) cycle and near-uniformly accelerated

Off-crest de-chirping

 \rightarrow Control and minimise bunch energy spread

Multi-cycle spectral bunching

 \rightarrow Pre-cursor to bunch train generation

Staging using a double-pulse structure

 \rightarrow Two-stage acceleration or Two-stage acceleration and de-chirp

Electron spectrometer images

Observed energy spectra with varying THz injection time:

- \rightarrow Determine the (unknown) bunch energy-time phase-space
- → Residual 'uncorrelated' energy spread of ≈ 20 keV
- → Bunch length \approx 200 fs FWHM (\approx 60 um)

(Predicted) bunch compression

Standard accelerator technique of magnetic chicane compression

- \rightarrow Apply chirp (time-energy correlation)
- \rightarrow Differing path length compresses the bunch length

Compression with optimised injection phase and chicane R_{56}

- → Compressed pulse duration \approx 23 fs FWHM
- → Energy-spread limited so <10 fs feasible</p>

Observed >150keV gain in \approx 8 mm interaction length \rightarrow 20 MV/m accelerating gradient, comparable to RF accelerators

- \rightarrow Limited by THz propagation/coupling losses (estimated <20%)
- → Issues with THz source frequency-matching to waveguide

THz-driven energy de-chirper

THz frequency is 100x higher than RF-driven injectors \rightarrow Allows for RF compression followed by THz de-chirping

Observed THz-driven de-chirping (and spectral broadening) controlled by THz injection timing

- → Reduce initial spread from 148 keV to 21 keV factor of 7
- \rightarrow Final energy spread <0.06% of the 35.5 MeV bunch energy

Multi-cycle THz-induced "spectral-bunching"

- → Start with long "linearly"-chirped electron bunch
- \rightarrow Optimise THz driving field strength
- → Minimum 20 keV peak width observed
- \rightarrow Non-linear peak-splitting observed beyond that

Magnetic chicane will convert into a train of ultrashort micro-bunches with psscale separation

- → Potential for <10 fs bunches with THz-induced fs timing stability
- → Demonstrated with 100 pC charge
- \rightarrow Capability for 10-100 micro-bunches using narrower bandwidth THz sources

Acknowledgements

The University of Manchester

