Collective Effects Study for the Diamond-II Storage Ring

Siwei Wang

PABG Annual Conference 25th – 26th July, 2022

Collective Effects in Storage Rings

- Beam in an accelerator interacts with its surroundings:
 - Interacting with the vacuum chambers via electromagnetic fields: resistive-wall effects, geometric effects. (wake and impedance)
 - Interacting with other particles within one bunch-> intra-bunch scattering (IBS)
 - Interacting with positively charged ions due to ionisation of residual gases.
- Coupling between bunches:
 - Single-bunch instabilities. (Short-range instability)
 - Coupled-bunch instabilities. (Long-range instability)

Wake and Impedance

Particles exciting electromagnetic fields:

- A bunch: wake fields
- A delta-function bunch: wake function

• The electromagnetic fields generated by a particle or a bunch of particles, The frequency domain counterpart of the wake function is the impedance Z(f)

$$V_{\parallel,\perp}(t) = \int_{-\infty}^{t} W_{\parallel,\perp}(t-\tau)\rho(\tau)d\tau, Z_{\parallel,\perp}(f) = \int_{-\infty}^{\infty} W_{\parallel,\perp}(t)\exp(-2\pi i f t) dt$$

- Tracking implementation in ELEGANT
 - One-turn map element, including longitudinal and transverse oscillation
 - Time domain (using wake function): convolution of the bunch distribution and the wake function.
 - Frequency domain (using impedance): IFFT(FFT(bunch distribution)×impedance)

Motivation

- The impact of resistive-wall and geometric impedance on storage rings
 - Short-range effects:
 - Longitudinal: bunch lengthening, microwave instability, synchronous phase shift.
 - Transverse: transverse mode coupling instability (TMCI), head-tail instability.
 - Long-range effects:
 - Driven by transverse resistive-wall wake, cavity higher order modes (HOMs)
 - Affect multi-bunch train motion. (Also coupled-bunch instability)
- Study of the instability in the storage ring design phase
 - Different instability thresholds.
 - Potential cure of instability
 - Positive chromaticity to damp the TMCI.
 - Bunch-by-bunch feedback system to stabilise the coupled-bunch beam motion.
 - Bunch lengthening using harmonic cavities.

Some Results of Collective Instability Study for Diamond-II

More details: R. Fielder, H.-C. Chao and S. Wang, "Single Bunch Instability Studies with a new Impedance database for Diamond-II", IPAC2022, Bangkok, Thailand, WEPOMS011

S. Wang, H.-C. Chao, R. Fielder, I. P. S. Martin and T. Olsson, "Studies of Transverse Coupled-Bunch Instabilities from Resistive-Wall and Cavity Higher Order Modes for Diamond-II", IPAC2022, Bangkok, Thailand, WEPOMS010

Single-bunch instability

- All impedance information stored in an impedance lattice (Accelerator Toolbox structure)
 - Resistive-wall impedance calculated using ImpedanceWake2D
 - Geometric impedance simulated with CST.
- Simulation using ELEGANT, 0.25mA step
 - Bunch lengthening, synchrotron phase shift, Microwave instability threshold.
 - Transverse mode coupling instability (TMCI) and head-tail instability threshold.

Courtesy of Richard Fielder

Coupled-bunch Instability

- Tracking with one particle representing one bunch. Discrete Fourier Transform on every turn to get the coupled-bunch modes.
- Good agreement between tracking and analytic formula for uniform fill pattern with chromaticity 0.

$$\Omega_{\mu} - \omega_{\beta} = -i \frac{ecI_0}{4\pi E_0 \nu_{\beta}} \sum_p Z_{\perp} \left(\omega_p \right)$$

 Ω_{μ} is the complex frequency of mode μ .

• Estimated thresholds from largest growth rate mode agree with tracking including radiation damping.

Growth Rate with Chromaticity

- Drive/damp measurement in existing ring
 - Drive the beam with specific mode frequency and measure natural damping
 - Damping rate fitted from IQ data.
 - Shift of curve with chromaticity. Different behaviour for positive and negative chromaticity.
- Simulation with Diamond-II impedance model
 - Including long + short wake + radiation damping, uniform fill pattern, 100mA
 - Similar trend as the experiment.
- Initial observations:
 - Long range wake: shrink of curve vs chromaticity
 - Radiation: larger damping rate for higher absolute value
 of chromaticity
 - Short range wake: Difference between positive and negative chromaticity

Measurement at Diamond-I

Conclusions

Single-bunch instability threshold below different operation modes for the Diamond-II storage ring.

			wiicrowave	Transverse (chromaticity 2)	
Fill pattern	Bunch current requirement			Horizontal	Vertical
	niferrer 0.22	Open IDs	2 mA	> 5 mA	> 5 mA
Standard	0.32	All IDs closed	2.5 mA	3 mA	3.25 mA
Hybrid	1.6	All IDs closed + FP HC	> 5 mA	> 5 mA	4.75 mA

- Coupled-bunch instability threshold very low at chromaticity 0 (300mA beam current).
 - Bunch-by-bunch feedback system required to stabilise the beam.
 - Harmonic cavity and chromaticity can help reduce the largest growth rate.

			SR damping time (ms)	Largest growth rate (/A/s)	Threshold (mA)
	Open ID	Horizontal	9.66	1622	63.8
		Vertical	18.1	3390	16.3
		Horizontal	5.66	6993	25.3
		Vertical	7.78	10505	12.2

Thanks

