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Large Hadron Collider

Large hadron collider (LHC):

- 26.7 km
circumference

- 175 m depth

- 1200 dipoles
-19K
temperature
-13.0 TeV

- ~2800 bunches
- 40 MHz collision
rate

Physics motivation:
- Search for the Higgs boson particle
- Precision measurements of W, Z and top
- Rare decays of b — hadrons
- Beyond Standard Model:
-- SuperSymmetrry
-- Extra dimensions
-- Leptoquark



Large Hadron Collider

Large hadron collider (LHC):

- 26.7 km
circumference

- 175 m depth

- 1200 dipoles
-19K
temperature
-13.0 TeV

- ~2800 bunches
- 40 MHz collision
rate

Physics motivation:
- Search for the Higgs boson particle — arXiv:1207.7235 and many more
- Precision measurements of W, Z and top — arXiv:1701.07240 and many more
- Rare decays of b — hadrons - arXiv:1307.5025 and many more
- Beyond Standard Model:
-- SuperSymmetrry
-- Extra dimensions
-- Leptoquark

No hint of BSM phenomena (yet)



Experiments at LHC

- Beams collide in 8 interaction points (IP)

- 4 |IP have a detector which corresponds
to a different collaboration

- Experiments: ATLAS, ALICE, CMS,
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Experiments at LHC

- Beams collide in 8 interaction points (IP) - CMS: Compact Muon

- 4 IP have a detector which corresponds Solenoid
to a different collaboration - Large general-purpose
- Experiments: ATLAS, ALICE, CMS, Detector
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- LHCb

- ALICE: A Large lon @\ g - Specialized b-physics
Collider Experiment experiment

- Specialized in heavy-ion % - Designed primarily for CP
(Pb-Pb) collisions ‘ 2 violation measurements

- Designed primatrily for
guark—gluon plasma
measurements

- ATLAS: A Toroidal LHC
Apparatus

- Large general-purpose
Detector




The CMS Detector

TDR om i m Ly - sm om !
Key:
Muon
Electron
Charged Hadron (e.g. Pion)
w = = « Noutral Hadron (e.g. Neutron)
---- Photon 1§
) ke . |
Colodmete Solrcld
Iren return yoke Interspersed
T::ns:;:z ﬂ;t with Muon chambers )]
Tracker: ECAL: HCAL.: Magnet: Muon:
- Pixels in the core - Homogeneous - Heterogeneous - Central device - Position exploits
- Silicon strips calorimiter calorimiter - Large solenoid that muon are
around - Lead tungstate - Interleaved heavy magnet penetrating
- In 2017 an extra (PbWO) scintillator material with - Field up to 4T particles
inner layer added - 61,200 crystals in scintillator layers - Bends charged - Very clean
- Total 14(15) layers barrel - Measures the particles to signatures
in Barrel(endcaps) | - 1,700 crystals in energy of hadrons measure their - Gaseous detectors
- Reconstructs the endcap - Indirect momentum of three types

trajectory of
charged particles

- Excellent
measurement of
position

- Measures the
energy of e and y

- Very good energy
resolution

measurement of
non-interacting
particles (like v)

- Drift tubes (barrel),
CSC (endcap),
RPC
(barrel+endcap)



https://inspirehep.net/literature/1614070

Trigger overview




Current Trigger architecture

Excessive amount of data!

» lechnically cannot be stored
entirely and also most events
Interesting. Need a way to select
the interesting subset

Collisions

Level 1 100kHz

Trigger: A system that selects events very fast

Divided in two parts L1 (very fast, coarse,
hardware-based) and HLT (computing farm less
fast more precise)

HLT ~1.2kHz




Level 1 trigger: Selecting events In ~4ps

Architecture:
Galorimetar Tigger Muon Trigger - Inputs from Calorimeters and Muon

— o) chambers
= (ot (o5 ] ] ‘ =) - Not using tracker
J v - ECAL and HCAL feed the
] E calorimeter trigger
i ml - ely, Jet Er measured
| | | | Endap | vrp || Bl | - MET, HT calculated
r_ ! l q - Muon chambers feed the Muon trigger
sl .e'_'_E'_n'eea?f"_‘"f??%iii"r?%‘?:??f"_é%r_r‘eu_'_'sl - Builds muon tracks
i - Divided in subsystems based on the
| e geometry (BMTF, EMTF, OMTF)

- Global trigger takes jets, muons as
input and calculates higher level
guantities. Then it checks for
interesting events

%

General:

- All Levell trigger is hardware-based in order to cope with the timing constraints (<4usec)

- The bandwith is 100kHz and is dictated by the electronics (cannot change)

- L1 objects are coarse - usually we cut looser than in offline

- L1 is a crucial system for any experiment: events rejected in this stage cannot never be
retrieved. Is the 1° stage of all analysis



Phase 2 upgrade
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LHC operations

Number of events: N=g L 0 = Cross section
L = Luminosity

To discover rare processes (like BSM) we need luminosity
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HL-LHC physics motivation

Higgs measurements:

- Improve precision on Higgs couplings measurement
- Search for rare decays (H - cc etc)

- DiHiggs searches to improve the Higgs self coupling
measurement

- Explore exotic models for BSM Higgs
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HL-LHC physics motivation

. 3000 fb (14 TeV)
Higgs measurements: R B

] 7 T
- . : = [CcMms
- Improve precision on Higgs couplings measurement ..og) 1L Projection e
- Search for rare decays (H - cc etc) P s
- DiHiggs searches to improve the Higgs self coupling = 107 [TE8%CL E
measurement b
- Explore exotic models for BSM Higgs 10°F e E
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BaBar o L
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" Sensitive searches to NP:
- Rare processes (like FCNC) are sensitive to BSM
phenomena due to small SM contribution
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HL-LHC physics motivation

Higgs measurements: s o 000" (14 TeY)
- Improve precision on Higgs couplings measurement %) 1ic Projection e
- Search for rare decays (H - cc etc) = f W
- DiHiggs searches to improve the Higgs self coupling < 107 | 68%CL g

measurement ? b

- Explore exotic models for BSM Higgs 0% o E
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Sensitive searches to NP:
- Rare processes (like FCNC) are sensitive to BSM
phenomena due to small SM contribution
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https://arxiv.org/abs/1902.00134
https://arxiv.org/abs/2103.11769
https://arxiv.org/abs/1203.0275

L1 Upgrade for phase 2

Phase 1 Phase 2

Calorimeter trigger Muon trigger Track trigger

Calorimeter Trigger Muon Trigger

Detector Backend systems

ECAL HCAL HCAL P
HBEME uHTR HF uHTR
Local
Global Calorimeter Global Track Global
Trigger Trigger
Y k4
Calo Trigger Layer 1 - ... Muon Track-Finder Layer
| Endcap |} Overap i, Barel |
| L External Triggers
V [
. ¥ -~ PF

E fia
Calo Trigger Layer 2 - ... BorlingMaerging Layer
| i Endeap E ! Orvarlap E E Barrsal i [ ]

Y - Correlator Trigger
| Glaobal
— | BAL
= | GT
Others CEEEES
2  overs S

Phase-2 trigger project

L1 latency L1 rate HLT rate
Phase 1 4 psec 100 kHz 1.2 kHz
Phase2 125pusec 750 kHz 7.5 kHz

Problem: Even with the increased rate, if the architecture remain the as is in Phase 1, the
trigger thresholds will increase so much that W, Z, H and B measurements will be impossible
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L1 Upgrade for phase 2

Phase 1 Phase 2

Calorimeter trigger Muon trigger Track trigger

Calorimeter Trigger Muon Trigger . —
h(-iEM iRPC - TP

Detector Backend systems
[ HCAL [ HCAL [ GSC- OT L RPC J
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"‘
Barrel ¥ oyrE EMTF Local
Layer-1 I

Global Track

(Global

Glubal Muon Trigger

MPC
Mezz
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l & fan-oul Trigger

: ¥ ¥ § v
Cado Trigger Layer 1 - .. .Muon Track-Finder Layer
: Endcap : : Owertap : S /
L } -k L} External Triggers

L — 1 | W

E fia
Calo Trigger Layer 2 - ... SortingMerging Layer____ |
i E l:lt,ap E Cnlarlap E Barral ! \]

Correlator Trigger
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: . Others EEEEE SGlohal Hgger | i
Phase-2 trigger pjet
L1 latency L1 rate HLT rate
Phase 1 4 psec 100 kHz 1.2 kHz
Phase2 125pusec 750 kHz 7.5 kHz

l'c

Problem: Even with the increased rate, if the architecture remain the as is in Phase 1, the
trigger thresholds will increase so much that W, Z, H and B measurements will be impossible

Solution: In Phase 2 L1 architecture is upgraded with a new detector: the L1 tracker

16



L1 track reconstruction
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New track detector

Phase 2 tracker:
- Both inner and outer tracker will be replaced to increase granularity
- Quter tracker (where occupancy is lower) will be used at L1
- L1 trigger possible by the inclusion of pr modules
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sool || | ! ! | ~20  Outer tracker
B 3 1
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2 S N O N N ! ¥ ') h —24
400= ¥ % X ' 'y —~26
E e 5 7 T Y U U W W N ! ¥ h h ~%{8}
S S N N T W W v 5 -
i : By [ | [ [ 'I ! -I 'l 40
S e B ! | |
ﬂ_l | | | | I ] | | | I | | | | I | | | | I | | | | I | | | | T-I Inner traCker
0 500 1000 1500 2000 2500 Z [mm]
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New track detector

Phase 2 tracker:
- Both inner and outer tracker will be replaced to increase granularity
- Quter tracker (where occupancy is lower) will be used at L1
- L1 trigger possible by the inclusion of pr modules

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
—_ | / / / / / P — — L6
= 1200 -
Eo0- | | | | | _18
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B 3 1
600 = !u ||' ] I | 22 (Used in L1)
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E e 5 7 T Y U U W W N ! ¥ h h ~%{8}
S SN N Y T U W v 5 e
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O:I | | | | I ] | | | I | | | | I | | | | I | | | | I | | | | Inner traCker
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pr modules: tracker layers Wlth two detectors close to each other

PS modaules (pixel-strip) 28 modules (strip-strip)
: « Top sensor: 2x2.5 cm strips, 100 pm pitch » 3trp sensors 10x10 cm=
The tWO types « Bottom sensor: 1.5 mm x 100 pm pixels + 2x5 cm long strips, 90 pm pitch

of pr modules
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Creating stubs

.E]mﬂ_l / / s ~ - - _ L6
E 10002 | | | | | 18
o - || || | | |
1 e | | | | | | | ~20
oo L L I
H T T U N N N :' :' :| :| :. —24
- ' ' | | | — 2.6
40{}___ et N Y T T T T Y A\ :l :I |I II |I _28
20{)_:_“7%:\\\\ LS W U U W v ! —30
O—E:I — : I| I|I I|I I | I | — ||I — |II — { - III - / — ] | . 4T:I'ﬂ'
500 1000 1500 2000 2500  z [mm]
"\llllld:._.____‘___‘_‘_'}/_\ pass | Fail StUbS:
o Fed - Connected pair of hits in the detectors of the
Tl.i - FFFPFFPFEEEE| ddddddddd p_l_ mOdU|eS
= 1 g . . .
- Must be consistent with particle of pr>2 GeV

Output stubs:
- 15k stubs per bunch crossing

- 30 Thits / sec
20



L1 Tracking system

L1 timing requirements:
- L1 track reconstruction must take at most 4 psec
- Whole L1 timing budget is 12.5 usec
- To cope with the tight timing requirement — L1 track reconstruction is parallelized

/ Geometrical parallelization:
A el e - Detector divided in 9 segments in @ (nonant)
: mf? - Track-finding works in 9 nonants, shifted from the tracker

-
-

) VA il - Stubs of each tracker nonant are pre-processed by 24
A% Jj Vo ™ Data Trigger and Control (DTC) boards
jfﬂﬂf%ﬁ& v - DTC send stubs to the Track Finding Processor (TFP)
'-H" 4 X boards
Detector 4 |
sector '“x';
DTC
Timing parallelization: . S
- Due to the large time needed for track = — WY
reconstruction, TFP needs more time than 4usec .o | s
- Therefore multiple TFP are processing different | =
events from the same nonant DTC
- This is called time-multiplex
- L1 track time-multiplex works with factor of 18
(ie each TFP receives new event / 18 bunch .

Crossings)



Algorithm overview

Three independent algorithms were proposed. Finally, merged two most prominent efforts in

the so-called “hybrid” algorithm.

Step 1
¥
i
.
ﬁtll’:-dtl‘fk ,*\
T, N\ \\
~ h\ \.\
~ \ \
\
- X

tracklet

Tracklet step:
- Starts track finding
- Selects stubs for
track candidate

Step 2

~~d

Cleaning step:
- Merge duplicate
tracklets

= X

Step 3

Layer(L})1 L2 L3 L4 L5 L6 L? L8

b

coarse J\ precise
fack { ) J\‘ &%:L ":'O track
parameters V }[/ parameters

Fitting step:
- Stubs are fitted in a
single track
- Kalman filter is used
- This is the best track
of L1
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Track building

Creating trackles:

) . E]?.m—_l ! /7 e -~ ~ - -
- Tracklets: pair of stubs in %mm_j__/__________ oL | R
sequential layers or disks. N — . | | | a0
- Seeds: tracklets in specific 0 ] |, -2
combinations of layers E_ //; /u/u '/" LT
- Seeds are tested in parallel | T o000 0 0 | B
- Only tracklets with sl N T B N .. L+ .' W
pr>2GeV considered as 6O " sbo T 1000 15000 20000 2500z [mm]
seeds
Track building:
- Starting from seed
s ~~L s i - Extrapolate to next/previous layers
e 1 ¥ B i - - Predefined windows are used
“*‘*-Mf““a\ X s V. \n\ \\ - Compatible stubs are considered as
B V. \ . T part of the same track
% e i e T - Hypothesis of a track from primary
% W\
\ \ vertex

23



Duplicate removal

- The same charged particle can create multiple seeds
- Aredundancy approach (all seeds considered independent) ensures high efficiency
-- Unavoidable side effect: creation of multiple L1 tracks from the same original
particle
- Existence of random stubs complicates the situation
- Tracks sharing three or more stubs are considered duplicates and merged

YA

= X
24



Track fitting

- Code based on Kalman Filter
- Start from the seed and sequentially

add stubs layer-by-layer

- In every stub addition the track is

updated

- Use a x° test to reject fake tracks or
iIncorrect stubs in a genuine track

- 4 parameter fit: pr, n, @, z

Layer(L)1 L2 L3 L4 L5 L6 L7 L8

coarse
track
parameters

<=

.

ﬂ>ﬁ> ¢ e

precise
track
parameters

increased precision of track parameters

Tracks are represented by a word of 96 bits

-
O
A

Track parameter Number of bits
q/R 15
¢ 12
tan(A) 16
Z0 12
dp 13
x2/dof 4
bend-y? 3
hit mask 7
track quality MVA 3
other quality MVAs 6
track isValid 1
spare 4
total 96
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https://cds.cern.ch/record/2714892?

Performance

- Few examples of the L1 track performance

High efficiency across n Precise z0 resolution for vertex
association
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https://cds.cern.ch/record/2714892?

L1 track impact on thresholds

- Usage of L1 tracks in the trigger:
1) Combining tracks with other objects improves pr precision

2) Provide extra handles like track Isolation
2) Implementation of advanced Particle Flow techniques similar to the offline

Arbitrary units

CMS Phase-2 Simulation

14 TeV

;T

u with L1 tracks
y without L1 tracks *

A 4

L1 tracks
e withou
L1 tracks

]
=
=
o

' Single

top

| | Thresholds for a rate of 42 kHz (u), 28 kHz (e)

tt—bb#vaq

L
20 40 60

100 120 140
Lepton p_ [GeV]

Arbitrary units

0.8

0.6}

0.4

0.2

CMS Phase-2 Simulation

pr thresholds
significantly
reduced
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HH—bbrr—bb mmm vovy

— With L1 tracks and PF

| ' Thresholds for a rate of 6.6 kHz

Without L1 tracks and PF

~20 40 60

i P—
80 100 120
Visible 7, p_ [GeV]
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https://cds.cern.ch/record/2714892?

Displaced track reconstruction

- Displaced L1 tracks: A new window to a (mostly) unexplored phase space
- Run 2 displaced analysis used mostly on prompt L1 triggers reducing the sensitivity

Two modifications are needed to build displaced tracks:

28



Displaced track reconstruction

- Displaced L1 tracks: A new window to a (mostly) unexplored phase space
- Run 2 displaced analysis used mostly on prompt L1 triggers reducing the sensitivity

Two modifications are needed to build displaced tracks:

1) Seeding modification
- Seeds of hybrid algo optimized for prompt
tracks (as first stub the center of CMS is used)
- In displaced tracking the center cannot be used,
seeds are required to have three stubs

0.0 0.2 0.4 0.6 0.8 1.0 12 1.4
[ ! s Ve - —~ - _16

F 1200
= I .
= 1000 - " | | 18
- _— | | 2.0
600 ] — | || || ‘I || -22
R N T T RN ‘ N h N —2.4
E | i | I 2
4002 M | I | ~26
= A Y T Y \ | I| h N || —2.8
- I | —3.0
200__,___\‘\ AR ] \ v Vool I
l ! 4.0
o= n
........................
0 500 1000 1500 2000 g()() Z [mm]
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Displaced track reconstruction

- Displaced L1 tracks: A new window to a (mostly) unexplored phase space
- Run 2 displaced analysis used mostly on prompt L1 triggers reducing the sensitivity

Two modifications are needed to build displaced tracks:

1) Seeding modification
- Seeds of hybrid algo optimized for prompt
tracks (as first stub the center of CMS is used)
- In displaced tracking the center cannot be used,
seeds are required to have three stubs

0.0 0.2 0.4 0.6 0.8 1.0 12 1.4
! / e

T 1200 < - - ~16
= Ju —
=1000 7 | | | \ | _1s
10005 L |
00 - |‘ || || ‘ || 20
] T W | |, 22
600 I /| 1 » —24
E T T T W W N Y I I 1 I
4002 " 1 ! ! Y
= A Y T Y \ 1 h N || —2.8
] N iy —30
200__,___\\\\ AT S U Y \ v Vool I
E F— ! 4.0
e R e R -
0 500 1000 1500 2000 g()() Z [mm)]

2) Fitting modification
- Prompt tracks use a four-parameter fit (displacement is not needed by definition)
- Displaced tracks need the addition of transverse impact parameter, do, so the fit is
promoted to five-parameter

The displaced version of the hybrid algorithm is called “extended” 30



Extended tracking performance

Efficiency with a simple displaced
muon gun as a function of do

CMS Phase-2 Simulation 14 TeV, PU=0
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Higher level objects with L1 tracks
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Primary vertex reconstruction

CMS Phase-2 Simulation 14 TeV 200 PU

Algorithm of vertex reconstruction s T 'i 4 UTrack
(FaStH|StO) = a5 i + Fake Track_:
- Select tracks passing quality cuts g = : 2" Feco Verex
- Tracks sorted in bins of z (like histogram = , E E T et g
Filling) . = ; 3

- Each track is weighted based on pr = . E
- The weighted average in z is the vertex CE : =
position e : E

- As primary we consider the vertex with 5 [ i —
highest scalar sum of pr oELLf, FIRB b e ey b

-6 4 -2 a 2 4 6 8
L1 Track z (cm)

CMS Phase-2 Simulation 14 TeV 200 PU CMS Phase-2 Simulation 14 TeV 200 PU

-
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Performance of z
position resolution is
better for tt events than
for Z. This is because tt
IS more energetic (ie
more tracks)
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New type of jets: Trackjets

Algorithm
Stepl: Divide in @ segments; bin Step2: Bin the step 1 clusters in @ to
tracks in n to create clusters create the final jets. Merge very
close jets
pr ¢ pr ! ¢ ¢,
Pr Pr Pr
L iR
n n n n
CMS pPhase-2 Simulation 14 TeV Mo PU o~ CI'FI:'S IF'"I‘aEIﬂ'Iﬂ ?'T"'—'Ih'fhln lllllll IM‘I TE"II’ |':|‘-"‘rI PIU
e T 1 05 T ettt g
o e = S S
..m_ : :f&gﬁ-b*%% % ] = : 5
0.95F 1 L 0.951 .
r ]

Simulated Hadronic ff Events PU=0 + i Simulated Hadronic tt Events PU=0

{ Fastlet anti-k;, R=0.3

0.9~ 'i L1 Track Jets N 0.9

D.BE“IIIIIIIIIIIIIIIIIIIIIIIII 085|||||||||||| |||||||||||| |

-2 -1 0 1 2 7 B0 100 150 20& 250 300
Gen Jetn Gen Jet p_[GeV]

t Fastlet antik,, R=0.3
¢ L1 Track Jets

T T T T | T T I%I |

-
O
A
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Displaced trackjets

m(H)=125 GeV, m(®)=30 GeV
CIMISF?he?se I .Simqlgzl‘ion

m(H)=125 GeV, m(®)=60 GeV
(13 TeV) C.IVI.SFI’hagse i .Si{r?qlngion (13 TeV)

Using extended tracks for
jet clustering — create
displaced track jets

Rate [kHZz]
T
|

Rate [kHz]
T

Samples:

++++ ct=0, hybrid

- Decay: H - 2® - 4b
-ct: 0, 1cm, 5cm, 10cm

- m(H)=125GeV, 250GeV — o o — o v

- m(P)=30GeV, 60GeV

= ct=0, extended T
wenee ct=1, hybrid

= ct=1, extended

ct=10, extended

veene ¢1=0, hybrid
= ct=0, extended T
++ex gt=1, hybrid

= ct=1, extended

— ¢t=10, extended

1 1 1 1 1 1 | i 1 1 1 1 1 1 1 1 1 1 1 1 1
0.15 0 0.05 0.15

" Efficiency ™" Efficiency
ROC curves (Efficiency vs m(H)=250 GeV, m(®)=30 GeV m(H)=250 GeV, m(®)=60 GeV
Rate) for hybrid vs CMSPhase I Simulation _ (13 TeV) CMSPhase Il Simulation (13 Tev)
extended trackjets

Rate [kHz]
Rate [kHz]

-
O
A
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= ct=1, extended
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Efficiency
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Track-based Missing Energy

Missing Transverse Energy (MET) can be calculated using L1 tracks only:

MET = = pr(trk)

- Selection cuts for this track must be optimized carefully

- Tracks from random hit combinations can have very high pr
-- In general those tracks are rare with respect to the total number of tracks
-- But if Az cut between PV and tracks is applied, it becomes dominant
-- Additional quality cuts to make MET measurement more accurate

o {:_EGME: Phase-25imulation 14 TeV 200 PUJ CMS Phase-2 Simulation 14 TeV 200 PU
E : H : W E §ooo. Simul rack MET, (42 cut
P — L1 Tracks, Ii'l.ZlCth E . Sirmubted Track MET, Az et
E . L1 Tracks, full selection ‘L |G_J1.'D‘ e ——— L1 Trackbased MET: |42 att
0.6 | _I_ g [ o .;. ———— L1 Track-based MET: Full sslection
C o r -
0.4 +~— | + | - [ .
- T T4+ O °c
0.12 1 T 1{:‘3;— .
0.1 o L I i
C oL T T ] - S it
0.081 e 10 Ty
: - Y YSUUUOUOUyRppUpUp S | . T ESERMUIS S pIP U I 1'+ ......................
0.06F i f
C - H H +-L
{]{]4_— _+__+_ Ir _+_ | || i 1{]§ |i“;...:|: ............... i ‘I_

- — - T £ | ~H
0.02F e TR _ 4 | hd
l —'—_-_ | | I 1 I | | I | | I | | | 1|
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w20 30 40 50 &0 VO8O 90 100 L1 Track MET [GEV]

L1 Track P [GeV]

-
O
A
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Summary

e Status of Phase 1:

- Many very interesting measurements and searches
- LHC has found any hard evidence of BSM
- We need to keep pushing the detector/accelerator limits!

* Phase 2 Upgrade will enable us to:

— Search even more exotic signatures
- Make precision measurements
- Discover rare decays

* The biggest change for L1 trigger for the Phase 2 is the track reconstruction:

- Very time-consuming procedure
- Requires the implementation of a complex system

— The benefits are many:
* Rate reduction in all thresholds (ie more interesting events)

* New objects like trackjets
» Exotic signatures like displaced tracks
« Can even trigger on rare decays like Bs - @@ - KKKK in L1

E-mail: georgios.karathanasis@cern.ch 37
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CMS detector

- L
Barrel EM calorimeter K ;,
W, T A
Trigger * Replace FBEE electronics =
——  Lower operating temperature

* Track information @ L1
« L1: 12.5 ps latency,

750 kHz output rate
* HLT: 7.5 kHz output rate

A

Other R&D

* Fast timing for in-time
pileup suppression

\ W

Muon systems

* Replace DT & CSC FE/BE
electronics

» Complete RPC coverage
(1.5<n<2.4)

|* Muon tagging (2.4<n<3)

Tracker

e 40 MHz readout (p1>2 GeV) in OT

» Extend coverage to n~4

Endcap calorimeter -

* Replace endcap calorimeters => HGCal
« Radiation tolerant, high granularity
« 3D capability

* Completely new inner+outer tracker (OT) B§
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Hardware implementation

Processing modules: Implement the
track finder

InputRouter
Memory modules: Store and share
information S— VFouic

VMStubs(TE/ME)

TrackletEngine

Tracklet builder and layer projector are StubPair
written in HLS =T 1

Prr_ue LllL‘l-r]ROIJtEI‘

‘H'MPrqu ction AIIPn:Hi-v:tlon

Caud idateMatch
v

Klaman filter is written in VHDL

MergeTrack
Ld
Kalman Filter CleanTrack
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Slice tests on-going

* Hardware for track-finding based on ATCA platform
(CMS standard for HL-LHC upgrade)
* Demonstration of algorithm in progress

Test stand @ CERN
with Apollo & Serenity blades

Apollo: track finding processing boards Serenity: DTC processing
- Service Module provides infrastructure components - Carrier card provides services
- Command Module contains two large FPGAS, - Daughter cards host FPGAs for data processing

optical fiber interfaces & memories

i i 3

-

41



DTC & TFP

E Detector nonant 1:
=~ | z+, z- (24 DTCs)
10001~ =
g -
i Time-multiplexed
Soer processing slice
B (7 _-:‘:‘_\_h
o Processor [
A nonant H {—\
- \ TFP
soof |
Dgtgd_uli't N time slices per M regions
nonant e.g. 18 time slices x 9 regions
P [N T N T T T N T T A A O " )
-1000 -500 0 500 1000 Detector nonant 2:

= [mm]

z+, Zz- (24 DTCs)

. L - new event received every 450 ns
DTCs perform stub pre-processing & distribute stubs to - total system: 162 TFP boards

THP boards (+ communicates with detector modules,
forwards full event data upon L1 accept, etc.)



Tracklet algo

 Seed by forming tracklets -

»
I I I Il o 18
I | I I Iy T

i DI+D2__D3+D4

» Pairs of stubs in adjacent
layers/disks

» Initial tracklet parameters from N
stubs + beamspot constraint ~ L1+L2_

ﬁ I,IHT”TIL1+D1HI'| A0
e Project to other layers/disks & “ | T T
match with stubs y
» Inside-out & outside-in N -
: o fitted track
» Calculate residuals used in fit - \3\
* Fit stubs matched to trajectory ~, \’:x \\
» Linearized X fit - NI
DA NN
e Remove duplicate tracks based ~ \ X \
on shared stubs <K\ \




Hough transform

* Fully time-multiplexed architecture where all module data for given BX send
to a single track finder processor board

L1 track finder

><j“__..--..--""""'_.' A o A - f,.---"""':_
s — - » ) "“-;-H_"‘ — =
¥ X’ﬂx - e BT e HT(r, ) / ,-/ﬂ_, —
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;’ >(// f//"/}_x E> ' [> = E{: _ ; ( /// // f‘;..-_
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