Towards a muon collider

Federico Meloni (DESY)

Experimental Particle and Astro-particle Physics Seminar

University of Zurich, 10/10/2022

HELMHOLTZ RESEARCH FOR GRAND CHALLENGE

Exploring the unknown

The puzzle of nature

Fundamental open questions:

- Gravity
- Dark matter / energy
- Unification of forces
- Matter-antimatter imbalance
- Is the 125 GeV boson the Standard Model Higgs?

High-energy microscopes

We conventionally pursue these questions by probing shorter distances with either precision (indirect) or energy (direct)

Muon colliders blur this dichotomy

The muon mass (105.7 MeV/c², 207 x e^{\pm} mass) means:

- Negligible synchrotron radiation emission
- Negligible beamstrahlung
 at collision

Major technical challenges

A brief history of muon colliders

The International Muon Collider Collaboration

Objective

Establish whether the investment into a full CDR and a demonstrator is scientifically justified

It will provide a baseline concept, well-supported performance expectations, and assess the associated key risks as well as cost and power consumption drivers

Link to website

Scope

• Focus on two energy ranges:

3 TeV 10+ TeV

- Explore synergy with neutrino/higgs factory
- Define R&D path

Comparison to proton-proton machines

Leptons are the ideal probes of short-distance physics

- All the energy is stored in the colliding particle
- No energy "waste" due to parton distribution functions
- High-energy physics probed with much smaller collider energy

2203.07256 2103.14043

2007.15684 2003.09084

Sustainability

High luminosity with **reasonable wall plug power** needs (~½ CLIC) Cost-effective construction and operation **Possible staging** / re-use of existing facilities

DESY. | F. Meloni | Experimental Particle and Astro-particle Physics Seminar, UZH | 10/10/2022

Collider overview

(positron-driven alternative requires additional R&D, not discussed here)

Muon collider target parameters

Parameter	Symbol	Unit	Target value		CLIC		
Centre-of-mass energy	$E_{\rm cm}$	TeV	3	10	14	3	
Luminosity	\mathcal{L}	$10^{34} { m cm}^{-2} { m s}^{-1}$	1.8	20	40	5.9	
Luminosity above $0.99 \times \sqrt{s}$	$\mathcal{L}_{0.01}$	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.8	20	40	2 🔸	
Collider circumference	C_{coll}	km	4.5	10	14	_	Beamstrahlung
Muons/bunch	N	10^{12}	2.2	1.8	1.8	0.0037	
Repetition rate	f_r	Hz	5	5	5	50	
Beam power	$P_{\rm coll}$	MW	5.3	14.4	20	28	
Longitudinal emittance	ϵ_L	MeVm	7.5	7.5	7.5	0.2	
Transverse emittance	ϵ	$\mu { m m}$	25	25	25	660/20	
Number of bunches	n_b		1	1	1	312	
Number of IPs	$n_{ m IP}$		2	2	2	1	
IP relative energy spread	δ_E	%	0.1	0.1	0.1	0.35	
IP bunch length	σ_z	mm	5	1.5	1.07	0.044	
IP beta-function	β	mm	5	1.5	1.07		
IP beam size	σ	$\mu { m m}$	3	0.9	0.63	0.04/0.001	

Based on extrapolation of the MAP parameters

 Plan to operate 5 years at each centre-of-mass energy (FCC-hh to operate for 25 years)

Key challenges

Proton target

2-4 MW proton beam

- Simulated graphite target ok
- Operation at 2000°C

High-field required to

muons

Cooling the beams

Cooling the beams

<u>1710.09810</u> 2201.07895

Status of components

Need cavities with high accelerating gradient and a strong magnetic field

Very strong solenoids required for final cooling

• Luminosity is proportional to the B field

Promising prototypes, need more R&D

National High Magnetic Field Laboratory 32 T solenoid with HTS

Several developments towards higher fields

Commercial MRI magnets are now available with fields of 28 T

MICE (UK) MuCool >50 MV/m, 5 T field

Two solutions

- Copper cavities filled with hydrogen
- Be end caps

Neutrino flux

Legal limit: MAP goal:	1 mSv/year < 0.1 mSv/year			
IMCC goal:	arcs below threshold for legal procedure < 10µSv/year			
LHC achieved:	< 5 µSv/year			
3 ToV 200 m doon tunnol ~ OK				

Need mitigation in collider arcs at 10+ TeV: move collider ring components Example: vertical bending

Opening angle of 1 mradian makes 14 TeV collider comparable to LHC

Need to engineer mover system and study impact on beams

Sketch credit: D. Schulte

Accelerator ring

Ramp magnets to follow E_{beam}

 Fast-ramping synchrotron magnets (-2T to 2T in 2 ms)

Demonstrated:

- Normal-conducting magnets (2.5 T/ms with peak of 1.81 T)
- HTS (12 T/ms, peak of 0.24 T)

Need 5 km of 2T magnets per TeV or fast HTS dipoles

Fixed-Field alternating gradient Accelerator (alternative)

- Complex high-field magnets
- Challenging beam dynamics

The beam-induced backgrounds (BIB)

Huge number of particles from muon decays (4×10⁵ per metre of lattice) and their byproducts

 Shieldeding with tungsten nozzles with borated polyethylene (BCH₂) coating

Unique challenge of Muon Colliders

Machine-Detector interface

Muon Collider detector design has to be carried out in close collaboration with accelerator and MDI designers!

STATUS

√s	IP design	MDI	Detector
3 TeV	v	1.5 TeV BIB	v
10 TeV	ongoing	ongoing	ongoing

Diagram credit: S. Jindariani

Example event - zoom on tracker

No beam-induced backgrounds

Example event - zoom on tracker

Beam-induced backgrounds

Detection Environment

 $1-MeV-n_{eq}/cm^2$ fluence for 200 days of operation

Total Ionising Dose for 200 days of operation

	Maximum Dose (Mrad)		Maximum Fluence (1 MeV-neq/cm ²)		
	R=22 mm	R=1500 mm	R=22 mm	R=1500 mm	
Muon Collider	10	0.1	10^{15}	10^{14}	
HL-LHC	100	0.1	10^{15}	10^{13}	
				_	
			FCC-hh requirements ~10 ¹⁸ 1 MeV-n _{eq} /cm ²		

Impact of nozzles

DESY. | F. Meloni | Experimental Particle and Astro-particle Physics Seminar, UZH | 10/10/2022

Impact of nozzles

Monte Carlo simulator	MARS15	MARS15	FLUKA	FLUKA	FLUKA
Beam energy [GeV]	62.5	750	750	1500	5000
μ decay length [m]	$3.9\cdot 10^5$	$46.7\cdot 10^5$	$46.7\cdot 10^5$	$93.5\cdot10^5$	$311.7\cdot 10^5$
$\mu \text{ decay/m/bunch}$	$51.3\cdot10^5$	$4.3\cdot 10^5$	$4.3\cdot 10^5$	$2.1\cdot 10^5$	$0.64\cdot 10^5$
Photons $(E_{\gamma} > 0.1 \text{ MeV})$	$170\cdot 10^6$	$86\cdot 10^6$	$51\cdot 10^6$	$70\cdot 10^6$	$107\cdot 10^6$
Neutrons $(E_n > 1 \text{ MeV})$	$65\cdot 10^6$	$76\cdot 10^6$	$110\cdot 10^6$	$91\cdot 10^6$	$101\cdot 10^6$
Electrons & positrons $(E_{e^{\pm}} > 0.1 \text{ MeV})$	$1.3\cdot 10^6$	$0.75\cdot 10^6$	$0.86\cdot 10^6$	$1.1\cdot 10^6$	$0.92\cdot 10^6$
Charged hadroms $(E_{h^{\pm}} > 0.1 \text{ MeV})$	$0.011\cdot 10^6$	$0.032\cdot 10^6$	$0.017\cdot 10^6$	$0.020\cdot 10^6$	$0.044\cdot 10^6$
$\mathrm{Muons}\;(E_{\mu^\pm}>0.1\;\mathrm{MeV})$	$0.0012\cdot 10^6$	$0.0015\cdot 10^6$	$0.0031\cdot 10^6$	$0.0033\cdot 10^6$	$0.0048\cdot 10^6$

The MDI optimised for the centre-of-mass energy of 1.5 TeV is assumed

- Simulation available in MARS15 and FLUKA
- BIB rates in detector volume approximately constant!

 \rightarrow higher centre-of-mass energies possible

Beam-induced background properties

Low momentum

Origin and direction

Timing

<u>1204.6721</u> <u>1905.03725</u>

2105.09116

Tracking detectors

Goal: tracker occupancy < 1%

 Other requirements are not unique: low mass/power, radiation tolerance, low noise

On- and off-detector filtering:

- Timing
- Clustering
- Energy deposition
- Local track angle
- Pulse shapes

4D tracking detectors

	Vertex Detector	Inner Tracker	Outer Tracker
Cell type	pixels	macropixels	microstrips
Cell Size	$25\mu\mathrm{m} imes25\mu\mathrm{m}$	$50\mu\mathrm{m} imes 1\mathrm{mm}$	$50\mu\mathrm{m} imes 10\mathrm{mm}$
Sensor Thickness	$50\mu{ m m}$	$100\mu{ m m}$	$100\mu{ m m}$
Time Resolution	$30\mathrm{ps}$	$60\mathrm{ps}$	$60\mathrm{ps}$
Spatial Resolution	$5\mu\mathrm{m} imes 5\mu\mathrm{m}$	$7\mu\mathrm{m} imes90\mu\mathrm{m}$	$7\mu\mathrm{m} imes90\mu\mathrm{m}$

R&D efforts crucial

Promising technologies exist

Example: Advanced hybrid bonding tech can give < 5 µm pitch and low input capacitance

• 20-30 ps time resolution

2203.06773

Beam-induced background rejection

Exploiting timing and pointing in the tracking detectors

Track reconstruction

Achieved performance specs in the central region

Needs improvements next to the nozzle

Transitioning from Conformal Tracking \rightarrow Combinatorial Kalman Filter (ACTS)

Enormous computational speedup (now ~ 4 min/event)

Flavour tagging

Starting from basic discriminants:

Secondary vertex-based tagging

Calorimetry

BIB dominated by neutral particles: photons (96%) and neutrons (4%)

Ambient energy about 50 GeV per unit area (~40 GeV in HL-LHC)

- High granularity
- Precise hit time measurement O(100ps)
- Longitudinal segmentation
- Good energy resolution $10\%/\sqrt{E}$ for photons and $35\%/\sqrt{E}$ for jets or better

R&D example: crystals

Crilin calorimeter

Semi-homogeneous calorimeter based on Lead Fluoride (PbF₂) crystals

- Segmented longitudinally
- Stackable submodules composed of matrices of crystals
- Crystal individual readout by 2 series of 2 UV-extended surface mount SiPMs

Jet reconstruction

LHC-level resolutions achieved

Further improvements:

• better tracking, calorimeter threshold optimisation, fake jet removal, ...

Muon detectors

Least affected by BIB:

- Most challenging region around the beam axis in the endcaps
- Some technologies, such as RPCs, are at the limit of their rate capability

Need R&D work to cope with BIB without loss of acceptance.

Targets:

- 100 µm spatial resolution
- < 1 ns time resolution

Muon reconstruction

Single muon performance demonstrated in presence of 1.5 TeV BIB
Readout and DAQ

Instantaneous luminosity of 10³⁴-10³⁵ cm⁻²s⁻¹

Beam crossings every 10 µs

Streaming approach: availability of the full event data \rightarrow better trigger decision, easier maintenance, simplified design of the detector front-end...

	Hit	On-detector filtering	Number of Links (20 Gbps)	Data Rates
Tracker	32-bit	t-t ₀ < 1 ns	~3,000	30 Tb/s
Calorimeter	20-bit	t-t₀< 0.3 ns E>200 KeV	~3,000	30 Tb/s

Table credit: S. Jindariani

Total data rate similar to HLT at HL-LHC

Streaming operation likely feasible •

Event Builder PC

Input links

HLT

Physics potential

A high-energy muon collider is a dream machine:

• Allows to probe unprecedented energy scales, exploring several different directions at once!

Direct searches	High-rate	High-energy	Muon flavour
	measurements	probes	physics
Pair production,	Higgs single and self-couplings, rare decays, top,	Di-fermion, di-boson,	Lepton Flavor
Resonances, VBF,		EFT, Higgs	Universality,
Dark Matter,		compositeness, …	b→sµµ, g-2,

Tens of papers submitted to the arXiv in the past few months!

$$\mathscr{L}_{\text{int}} = 10 \, \text{ab}^{-1} \times \left(\frac{E_{\text{cm}}}{10 \, \text{TeV}}\right)^2$$
 Required to perform measurements with %-level precision

New heavy particles

Collide elementary particles at very high centre-of-mass energies

Explore physics at 10+ TeV ۲

Produce pairs of EW particles up to kinematical threshold!

 \widetilde{W} 10^{5} events \widetilde{h} 10^{4} $-T_{2/3}$ 10^{3} \widetilde{t}_L $-\widetilde{t}_R$ 10^{2} 3 $\mathbf{2}$ 4 1 M [TeV]

Pair production, Resonances, VBF. Dark Matter, ...

Direct

searches

Pair production, Resonances, VBF, Dark Matter, ...

WIMP dark matter reach

High-rate measurements

2203.09425

Higgs single and self-couplings, rare decays, top, ...

Higgs boson production

The Higgs itself is key

Any deviation in its properties from SM predictions is a telltale sign of new physics

	$\mu^+\mu^-$		+ HL-LHC		$+$ HL-LHC $+$ 250 GeV e^+e^-	
	$3 { m TeV}$	$10 { m TeV}$	3 TeV	$10 { m TeV}$	3 TeV	$10 { m TeV}$
κ_W	0.37	0.10	0.35	0.10	0.31	0.10
κ_Z	1.2	0.34	0.89	0.33	0.12	0.11
κ_g	1.6	0.45	1.3	0.44	0.72	0.39
κ_γ	3.2	0.84	1.3	0.71	1.2	0.69
$\kappa_{Z\gamma}$	21	5.5	22	5.5	4.0	3.3
κ_c	5.8	1.8	5.8	1.8	1.7	1.3
κ_t	34	53	3.2	3.2	3.2	3.2
κ_b	0.84	0.23	0.80	0.23	0.44	0.21
κ_{μ}	14	2.9	4.7	2.5	4.0	2.4
$\kappa_{ au}$	2.1	0.59	1.2	0.55	0.61	0.40

 $\sigma(h+X)/\sigma_{tot}$

Is the 125 GeV Higgs the only one?

Example extension of scalar sector

• A Standard Model singlet mixing with the Higgs

$$h \,=\, h^0 \cos \gamma + S \sin \gamma \ \phi = S \cos \gamma - h^0 \sin \gamma$$

Production:

$$\sigma_{\phi} \ = \ \sin^2 \gamma \, \cdot \, \sigma_h(m_{\phi})$$

Decay:

 $egin{aligned} &\mathrm{BR}_{\phi
ightarrow far{f},VV} \,=\, \mathrm{BR}_{h
ightarrow far{f},VV}(1-\mathrm{BR}_{\phi
ightarrow hh}) \ &\mathrm{BR}_{\phi
ightarrow hh} \sim 25\% \end{aligned}$

High-rate measurements <u>1807.04743</u>

Higgs single and self-couplings, rare decays, top, ...

Muon colliders as vector boson colliders

Vector boson fusion dominates well above threshold due to logarithmic growth with centre-of-mass energy

Opportunity to tag forward muons and distinguish between charged and neutral VBF processes is unique at muon colliders

Requires dedicated detector design! •

Di-fermion. di-boson, EFT. Higgs compositeness

Muon flavour physics

> Lepton Flavor Universality, b→sµµ, g-2, ..

Muon-related anomalies

Model independent test of g-2

- Solid lines correspond to limits on contact interactions
- Dashed lines illustrate the sensitivity to specific classes of models

Potential to probe flavour anomalies

Assuming EFT validity:

- Better reach than FCC-hh
- Realistic models accessible also at low centre-of-mass energies

Accelerator roadmap

On request by CERN Council LDG developed R&D Roadmap

- Global community participated
- A global roadmap
- Estimates of resources

No insurmountable obstacle found for the muon collider

- Important need for R&D
- Implementation plan in the works

Demonstrator programme

Planning demonstrator facility with muon production target and cooling

Demonstrator programme - synergies

Bright muon beams are the basis of neutrino physics facilities such as nuSTORM

 Potential to share an important part of the complex with a muon cooling demonstrator

beam power

Page 47

Summary

The muon collider presents **enormous potential for fundamental physics research** at the energy frontier

Need to develop concept to a maturity level that allows to make informed choices by the next ESPPU and other strategy processes

Important progress in development of workplan

Getting there won't be simple: the road ahead is filled with challenging and interesting R&D!

Thank you!

Contact

Federico Meloni DESY-FH federico.meloni@desy.de

Future decision tree

Machine designs

Proton or positron-driven sources?

Space constraints

CERN-LHCC-2017-021

Muon Collider tracker layout

Tracking and trackers

Tracking detector bombarded by huge amount of randomly distributed hits/BX.

Extremely challenging track
 reconstruction

Goal: tracker occupancy < 1% Need to filter hits:

- Timing (aim for ~30 ps resolution)
- Correlation of hit pairs (similar to CMS pT modules for track trigger)

DESY. | F. Meloni | Experimental Particle and Astro-particle Physics Seminar, UZH | 10/10/2022

Ongoing efforts

Several promising technologies with active R&D:

- Monolithic detectors (HV/HR-CMOS) embedded readout
- Low Gain Avalanche Detectors (LGADs) good timing, large pads
- Small "standard" pixels with 3D hybrid bonding intrinsically radiation hard
- Intelligent sensors

Common challenges for many technologies:

• Services, cooling, low-power ASICs

CMS and ATLAS are building 1st generation 4D-tracking detectors

- Single or two hits per charged particle, and large pixels
- Next generation detectors will be more sophisticated

Peripheral Electronics Double sided layers Dou

R&D examples

Sensors developed for CMS and ATLAS show high degree of uniformity, excellent time resolution, but are rapidly becoming obsolete.

- Limited fill factor
- Moderate radiation hardness

AC-coupled LGADs

- Remove dead area and improve position resolution via charge sharing
- Fast timing information at per-pixel level
- Signal from drift of multiplied holes into the substrate and AC-coupled through dielectric
- Electrons collect at the resistive n+ and then slowly flow to an ohmic contact at the edge

Diagram credit: CNM

R&D examples

Capabilities enabled by **3D hybrid bonding** provide small pixels with low capacitance

- 3D integration of sensors and electronics provide low C_L, dense interconnects and processing
- Enables 4D tracking detectors + directionality (X,Y,Z,T,θ)

If the signal/noise is high enough we can use fast induced currents instead of collected charge

- Use the current pulse shape to characterize charge deposit, track angle
- Fast timing, radiation hard, precise, angle resolution

Power and space

Estimation of power constraints on vertex detector (assume 25 μ m² pixels with four barrel layers and eight endcap disks, conventional scaled CMOS electronics and extrapolations of optical-based data transmission).

- 450 W for analog bias
- 100 W for sensor bias
- 1.5 kW for data transmission

New technologies might change the picture completely.

 Extrapolation of current LGAD technology to smaller pixel size would require reduction of O(10²) to stay in same budget of ATLAS/CMS timing detectors.

Furthermore, the detector is expected to be very compact.

 Need to minimise space required by services

DESY. | F. Meloni | Experimental Particle and Astro-particle Physics Seminar, V2H[†] 10/10/2022

R&D examples: silicon

Main arguments to adopt silicon:

- Fine segmentation
- Robust and stable performance
- High density

Development by CALICE collaboration

- 1 m² area prototypes
- Scale up to 2500 m² for full detector
- Could adopt CMOS for digital ECAL (10⁴ increase in channel density)

Main challenges:

- Cost
- Operation (calibration, monitoring)

ALICE forward calorimeter

total: 14.5 m² Si pads 1.5 m² CMOS pixels

Full CMOS prototype of a digital ECAL

R&D examples: gas detectors

Resistive Plate Chambers (RPC) and Micro Pattern Gas Detectors (MPGD) are good candidates as active medium for high granularity sampling calorimeters.

General properties:

- robustness and cost
- can cover large areas
- 50-100 μm space resolution
- are radiaton hard
- can cope with relatively high rates
- good time resoluton

R&D and engineering challenges

- uniformity on large areas
- limits on sizes (dead areas)
- gas homogeneity and time stability
- low sampling fraction

SDHCAL with GRPC

Alternative Micromegas boards

Micromegas prototype of 1x1m2 consisting

Ongoing efforts

ALICE-TOF MRPC

Impressive amount of R&D (and pace of development) for MPGDs.

- Still young detectors \sim 10 years ۲
- Most mature technologies being used in LHC phase 2 upgrades

Main challenge:

Engineering and realization of large area detectors

Multi-gap RPC are a proven option to operate in large particle fluxes.

20 ps time resolution achievable

Main challenge:

current gas mixture which has a high Global Warming Potential

R&D examples: PICOSEC

Detect charged particles through **UV Cherenkov photons**.

Absorbed at the photocathode and partially convert into electrons.

Electrons are then amplified in two high-field drift stages and induce a signal which is measured between the anode and the mesh.

R&D examples: µ-RWELL

Detector composed of two elements:

- µ-RWELL_PCB (amplification-stage resistive stage readout PCB)
- drift/cathode PCB defining the gas gap

The "WELL" acts as a multiplication channel for the ionization produced in the gas of the drift gap. Different high-rate layouts.

General characteristics:

- very reliable
- low discharge rate
- adequate for high particle rates
- space resolution < 60 µm
- time resolution < 6 ns

Electroweak multiplets and dark matter

Start from the simplest interpretation of dark matter: it is the **thermal relic of at least a new stable neutral particle**.

- The SM is extended with *n*-tuplets that predict such neutral state χ^0
- Stability of χ⁰ is ensured by the theory, or by an external stabilisation mechanism
- Small mass splitting between the components of the multiplet
- Heavier states can be long-lived

Experimental signatures:

- Displaced vertices
- Kinked tracks
- Displaced tracks
- Disappearing tracks

doublets (winos) and triplets (higgsinos)

The search for disappearing tracks

An example from supersymmetry

ISR/FSR:

- "Trigger" the event
- Momentum imbalance

/ jet π π^{\pm}

Charginos:

- Long lived, charged
- Reconstructable as "tracklets"

Neutralinos:

- Stable, neutral
- Invisible
- Momentum imbalance, missing mass

Displaced pions:

- Possibly
 - reconstructable
- Not considered here

Where to look for these?

If dark matter is explained by a single particle, we expect this particle to be heavy.

Higgsino ~ 1.1 TeV Wino ~ 2.7 TeV

Beyond the reach of the LHC!

- To characterise this particle in a lab, a higher energy collider is required.
 - FCC-hh expected to deliver proton-proton collisions at $\sqrt{s} = 100$ TeV.

(M. Saito, R. Sawada, K. Terashi, S. Asai, <u>arXiv: 1901.02987</u>)

• A high energy muon collider at \sqrt{s} = 3, 10 TeV (MuC 3, MuC 10).

(R. Capdevilla, F. Meloni, R. Simoniello, J. Zurita, arXiv: 2102.11292)

Kinematic expectations

Comparing the FCC-hh and MuC 10

Lorentz boosts

Expected production rates

At the MuC 10

Cross-section predictions from MadGraph5_aMC@NLO 2.8.2

Expect to produce about 10000 $\chi^{\pm}\chi^{\mp}$

- Similar expectation for MuC 3 (1/10 int. luminosity but x10 cross-section)
- s-channel $2\rightarrow 2$ "Drell-Yan" dominant in the range of masses considered
- Photon-initiated production possible (<u>arXiv: 2009.11287</u>) but sub-dominant

The tracking detectors

Vertex Detector (VXD)

Inner Tracker (IT)

Double-sensor layers

(4 barrel, 4+4 disks)

50 μm thick5 μm single-point resolution**30 ps** time resolution

Single-sensor layers (3 barrel, 7+7 disks)

Outer Tracker (OT)

Single-sensor layers (3 barrel, 4+4 disks)

100 μm thick
7 x 90 μm single-point resolution
60 ps time resolution

DESY. | F. Meloni | Experimental Particle and Astro-particle Physics Seminar, UZH | 10/10/2022

Track reconstruction

Use conformal tracking algorithm (developed for CLIC, arXiv: 1908.00256):

1. Conformal mapping

Track reconstruction

2. Cellular automaton-based track finding

- Consider only a subset of the hits
- Each hit is used as seed to look for neighbours, with cuts on angles and distances
- Seed cells are created and the search for neighbours is repeated
- Cellular tracks are groups of cells
- The best tracks (lowest χ²/N.d.f.) are kept, the hits marked as used and the search repeated
- Seed tracks can be **extended** (e.g. with hits from another sub-detector)

This specific case

We want to reconstruct as short as possible tracks.

- Minimum 4 hits (2 double layers)
 - Minimal reconstructable decay length is 5.1 cm

If we consider all hits, it takes **more than a week** to reconstruct the tracks from a single event.

Need to simplify the problem!

- Regional tracking (in bins of the polar angle θ)
- Tight cuts on cell creation (both in $r\varphi$ and rz planes)
- Add hit-level selection requirements

In the future testing more aggressive LHC-like algorithms (ACTS?) could greatly improve the run-time.

BIB rejection: timing

Exploit particle arrival times to reduce BIB

• Correct for time of flight (assuming β =1) Corrected time = $t_{measured}$

|r|

С

BIB rejection: stub tracks

The double-layer layout of the vertex detector can be exploited to reject hits from BIB particles.

• Look for pairs of hits in neighbouring double-layers forming "stub tracks" that point back to the luminous region.

BIB rejection: stub tracks

The double-layer layout of the vertex detector can be exploited to reject hits from BIB particles.

• Look for pairs of hits in neighbouring double-layers forming "stub tracks" that point back to the luminous region.

Tracklet reconstruction efficiencies

After BIB rejection cuts

Impose a "disappearing condition" (hit veto) at the first layer of the IT (12.7 cm)

Efficiencies evaluated with truth matching to χ^{\pm}

- Reconstructable tracks are defined as tracks from χ^{\pm} with at least 4 hits
- Tracks must have at least 70% of hits from a single $\chi^{\scriptscriptstyle \pm}$
- Evaluated vs the χ^{\pm} decay radius and polar angle θ

Towards quantifying the sensitivity

- Perform analysis on **smeared truth-level events**
 - Use Delphes card (v0) by M.Selvaggi for high-level reconstructed objects
 - Use tracklet reconstruction our response functions from full simulation
 - Overlay BIB tracklet background from full simulation
- Focus on fake tracklets and assume that hadron and lepton tracks lost to multiple scattering can be made negligible (as in LHC searches)
 - $\sigma (\mu^+ \mu^- \rightarrow \nu \nu)$ ~ 60000 fb (dominated by t-channel W exchange)
 - $\sigma (\mu^+ \mu^- \rightarrow \chi^\pm \chi^\mp)$ ~ 1-2 fb

Event selection

Relatively simple event selection:

• Tracklet p_{T} (single most important quantity)

Event selection

Relatively simple event selection:

The $\chi^{\pm}\chi^{\mp}$ come from the same vertex •

 π^{\pm}

BIB rejection

Angular summary

Selections most effective in the central region, which is favoured by signal.

Track-level selections

Several selections applied to reduce the number of tracks from BIB particles.

 No cuts on z₀ to reduce dependence on beamspot size

After cuts:

- 0.08 BIB tracks per event
- 90% signal track efficiency

Event selection

Relatively simple event selection:

• ISR/FSR photon

Muon colliders: prospects

