Hyper-Kamiokande Project

1 1

Yasuhiro NISHIMURA

< nishimura @ phys.keio.ac.jp > Keio University, Japan Experimental Particle and Astro-Particle Physics Seminar @ UZH 28/Nov/2022

Hyper-Kamiokande Project

The Hyper-Kamiokande Project

= A Larger Water Cherenkov Detector + High-intensity Accelerator and near detectors Hosted by University of Tokyo, Japan Hosted by KEK, Japan

Large Cavern Construction

× 8.4 of Super-Kamiokande target water

High-sensitivity Photosensors × 2 performance

+ Detector system With international contributions

= Far detector at long-baseline v experiment

Proton Decay

71m water depth

Construction has started in 2020

68m

Start observation in 2027

Neutrino **Oscillations**

Neutrino Astronomy

1.3MW beam intensity \times 2.6 of current intensity

+ Systematic suppression By improved and new near detectors For Leptonic CP Violation

Kamiokande Series

Kamioka Nucleon Decay Experiment

Kamiokande (1983-1996)

- Atmospheric and solar neutrino "anomaly"
- Supernova 1987A
- Birth of neutrino astrophysics 28/Nov/2022

+ Kamioka Neutrino Detection Experiment

Super-Kamiokande (1996 - ongoing)

- Proton decay: world best-limit
 - Neutrino oscillation (atm/solar/LBL)
 - > All mixing angles and $\Delta m^2 s$

3rd Hyper-K, HK

Hyper-Kamiokande (start operation in 2027)

- Extended search for proton decay
- Precision measurement of neutrino oscillations (v CPV, mass ordering, etc.)
- Neutrino astrophysics

Explore new physics

22 Hyper-Kamio

Discovery of neutrino oscillations

Needed

Hyper-Kamiokande Project (Y. Nishimura)

Outer Detector (OD With 2 detection layers Barre Inner Detector (ID) Observe faint Cherenkov ring from neutrino or proton decay 40k ID photosensors (max) Φ65m × H66m ID volume Botton Detector components

 $\Phi 68m \times H72m tank$

Overburden of 650meters of rock (= 1,750 meters-water-equivalent)

Far detector (FD) from J-PARC neutrino source

Hyper-Kamiokande Detector Water Cherenkov detector

purification system

28/Nov/2022

Consisted of 3 faces

Тор

- Tank in deep underground \rightarrow Low background
- Ultra pure water \rightarrow Transparent and known optical characteristics
- ID/OD photosensors \rightarrow High performance
- Electronics in the water \rightarrow Stable operation with shorter signal cables

Broad international contribution is required to realize the detector.

Hyper-Kamiokande Collaboration

Number of Collaborators ---Total -Japan 493 500 438 (20 countries) 400 (19)336 344 310 312 (17) (18) 340 300 287 (15)248 (14)(13 countrie 251 241 200 231 183 100

2016

2017

2018

Europe	281 members	Asia	l 49 member
Armenia	3	1.12	0
Czech	4	India	8
France	27	Korea	18
Germany	1	Japan	123
Italy	55	Americas	52 membe
Poland	38	Brazil	3
Russia	22	Canada	32
<u> </u>		Mexico	8
Spain	35	USA	9
Sweden	5		
Switzerland	13	Africa	11 membe
		Morocco	11
Ukraine	4		
1.117	74		

20 countries, 99 institutes, ~500 people as of Jan 2022, and growing

2019

2020 2021 2022

ETH Zurich and Universite de Geneve from Switzerland

Still looking for more collaborations!

28/Nov/2022

ID / OD at Hyper-Kamiokande

4π Acceptance with Tagging inward / outward going particles Cosmic µ Veto Outer detector Inner detector with ~10k 3-inch (8 cm) photosensors Partially and wavelength Contained 1000 shifting plate

Event Observation

- Time and charge of each photosensor at single-photoelectron hit threshold are always taken for all photosensors as hits.
- Event Trigger by sum of hits in some set of time window
 - Accelerator neutrinos at beam spill timing synchronized with GPS time between HK and J-PARC
- Cherenkov ring gives vertex position, direction, momentum of particles and type.

Particle Identification with Ring Pattern

-2 0 2 4 6 8 PID likelihood sub-GeV 1ring (FC Particle identification (>99% efficiency for μ/e separation)

Event selection with OD veto, fiducial volume cut by a distance from the wall

28/Nov/2022

(energy and direction)

Hyper-Kamiokande Project (Y. Nishimura)

J-PARC

 $\sim 1ms$

Wide Physics Targets

Various neutrino sources are visible at the single detector

- Hyper-Kamiokande is a multi-purpose detector with the capabilities
 - Real time measurement of vertex, direction, energy and particles types
 - Alert of supernova to astronomical observatories
 - Large fiducial mass with low radioactive background
 - Wide dynamic range to observe neutrinos from MeV to TeV energy scale

+ new physics cases?

Motivation of Nucleon Decay Searches

28/Nov/2022

Strong BSM Cases by Models

 \rightarrow Identify details of unification picture with both modes

 \rightarrow Extract flavor structure of SUSY particles

- Many models predict proton decays around current limits.
- Need various modes to test GUT models.
- Hyper-K can search more decay modes.

28/Nov/2022

$p \rightarrow e^+\pi^0$ discovery in Hyper-K

$p \rightarrow vK^+$ discovery in Hyper-K

28/Nov/2022

Neutrino Astrophysics

Neutrino Oscillations

$$\begin{pmatrix} \boldsymbol{v}_{e}, \boldsymbol{v}_{\mu}, \boldsymbol{v}_{\tau} \end{pmatrix}^{T} = U_{\alpha i}^{MNS} (\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3})^{T} \qquad U^{MNS}: \text{Maki-Nakagawa-Sakata matrix}$$

$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix}^{T} = \begin{pmatrix} \cos \vartheta_{12} & \sin \vartheta_{12} & 0 \\ -\sin \vartheta_{12} & \cos \vartheta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \vartheta_{13} & 0 & \sin \vartheta_{13} e^{-i\vartheta} \\ 0 & 1 & 0 \\ -\sin \vartheta_{13} e^{i\vartheta} & 0 & \cos \vartheta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \vartheta_{23} & \sin \vartheta_{23} \\ 0 & -\sin \vartheta_{23} & \cos \vartheta_{23} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

$$P(\overrightarrow{\boldsymbol{v}_{\alpha}} \rightarrow \overrightarrow{\boldsymbol{v}_{\beta}}) = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin^{2} \frac{(m_{i}^{2} - m_{j}^{2})L}{4E_{v}}$$

$$(\pm 2 \sum_{i>j} \operatorname{Im}(U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*}) \sin \frac{(m_{i}^{2} - m_{j}^{2})L}{2E_{v}}$$
Matter-effect is omitted here

Neutrino Oscillation Parameters: 6 = 4 matrix elements and 2 mass-squared differences

$\frac{\theta_{23} \sim 45 \pm 5^{\circ}}{4 \times 10^{-3} e^{1/2}}$	$\frac{\theta_{12} \sim 34 \pm 3^{\circ}}{4 m^{2} m^{$	<u>θ13~9°</u>	<u>Leptonic CP phase</u> <u>δ=unknown</u>
Atmospheric, $\pi \rightarrow \mu + \nu \mu$, $\mu \rightarrow e + \nu \mu + \nu e$ in air	Solar, $4p \rightarrow He + 2e^+ + 2ve$ Reactor Neutrinos	Accelerator, $\pi \rightarrow \mu + \nu \mu$ Reactor Neutrinos $n \rightarrow p + e^{-} + \nu e^{-}$	Accelerator, Atmospheric Neutrinos
Accelerator Neutrinos		·	

Mass Hierarchy or Mass Ordering $(\Delta m^2_{32}=m^2_3-m^2_2>0 \text{ or } \Delta m^2_{32}<0)$ is unknown Octant of θ_{23} or $\theta_{23}=\pi/2$ is also interesting question 28/Nov/2022 Hyper-Kamiokande Project (Y. Nishimura)

14

Strategy of Oscillation Measurement

Combination of long-baseline and atmospheric neutrino observations ⇒ Resolve parameters degeneracy

CPV discovery potential

Atmospheric neutrino: sensitive to mass ordering by Earth's matter effects → Constraints on mass ordering enhance sensitivity to CP violation by long-baseline

28/Nov/2022

Precision Measurement of Neutrino Oscillations

1.3MW, 10 years

- Good opportunity to make discovery of CP violation at >5 σ
- Measurement of δ_{CP}
- \succ ~20° for $\delta_{cp} = -90^{\circ}$ / ~7° for $\delta_{cp} = 0^{\circ}$
- Reduction of systematic uncertainty has sizable impact
- > Upgrade of ND280 + 1kton scale water Cherenkov (IWCD)
- Aim to suppress detector error below 1%

Expect to determine all neutrino oscillation parameters (except for absolute mass). 28/Nov/2022 Hyper-Kamiokande Project (Y. Nishimura)

Requirements for the Detector

- Trigger
 - Peak event rate reaches 50kHz for supernova at galactic center
 - Detection of delayed signals Ο
 - Michel electrons $\sim 2\mu s$ after muons
 - Neutron tagging: 2.2 MeV γ -ray $\sim 200 \mu s$ after neutrino interactions
- Energy scale
 - Wide dynamic range from single p.e. (a few MeV) to >1000 p.e. (>100 GeV)
 - GeV-scale (atmospheric/accelerator/proton decay): Ο
 - ▶ ~2% uncertainty in SK \rightarrow Aim for < 1% uncertainty at HK to realize precision measurement

eutron

- MeV-scale (solar/supernova) Ο
 - High detection efficiency of Cherenkov photons
 - Low background in the water and photosensors
 - ▶ ~0.5% uncertainty in SK with LINAC calibration
 - Major source due to position dependence (uniformity in detector) \rightarrow Important for Day/Night asymmetry measurement
- Timing
 - ~1ns resolution required for vertex position reconstruction (~20 cm)
 - \rightarrow BG rejection (spallation, external γ from rock/PMT), control of fiducial volume by vertex position
- Long term stability
 - Stable for >10 years without repair (Less dead channel, stable detector response)
- 28/Nov/2022

(Y. Nishimura) Hyper-Kamiokande Project

18

Improvements from Super-K

28/Nov/2022

Hyper-K Detector Components

Start the detector installation in 3 years

View from inner barrel detector side

+ Calibration system, electronics, DAQ on top of the tank

Hyper-Kamiokande Project (Y. Nishimura)

20

50cm (20-inch) Photosensors

The largest photomultiplier tube was developed for Hyper-Kamiokande.

For Kamiokande

Hamamatsu R1449 (Venetian blind dynode)

Performance improved R1449 → R3600

- Design improved
- Focusing mesh Ο
 - To half dynode space
- Wide aperture Ο
- Insulator added at dynode Ο
 - Waterproofing, etc.
 - Collection efficiency $40-50\% \rightarrow 70\%$
- Transit Time Spread (σ) 4.4 ns \rightarrow 2.2 ns
- Rise time 20 \rightarrow 10ns, FWHM of signal 30 \rightarrow 18ns
- NIM A329 (1993) 299-313

For Super-K

R3600

(Venetian blind dynode, improved)

42 cm (17") aperture Box&Line PMT **R7250**

(Box&Line dynode)

of R3600

For KamLAND

50 cm MCP PMT **NNVT N6201 For JUNO**

(Micro Channel Plate)

3 types of photosensors developed for Hyper-K

50 cm Box&Line PMT **R12860-HQE** (Box&Line dynode)

Ο

50 cm Hybrid Photo-Detector (HPD) **R12850-HQE** (Avalanche diode × amp)

50 cm MCP PMT N6203 by NNVT and IHEP w/ better timing performance

Hyper-Kamiokande Project Nishimura)

28/Nov/2022

Amplification of 50 cm Photosensors

50cm Photosensors for Hyper-K

50 cm Box&Line (BL) dynode PMT

- All PMTs will be tested in high pressure water before installation.
- PMT cover to avoid chain implosion was developed for Hyper-K.

28/Nov/2022

Improved Detection Efficiency and Gain stability

25

Total Detection Efficiency of Single PE

Double improvement and flat response in wide acceptance

Installation of ~140 Box&Line PMTs to Super-Kamiokande in 2018

Will be operated for 8 years before Hyper-K starts.

28/Nov/2022

Performance of BL PMT in Super-K

Evaluated performance in Super-K in 2018.

Gain was calibrated to 1.7×10^7 for all PMTs.

Double detection efficiency and half resolutions were confirmed in Super-K.

28/Nov/2022

Noise Reduction of BL PMT

Noise reduced by R&D (Initial BL PMT \rightarrow by 2020)

- Noise from PMT
 - O Glass : U, Th, ⁴⁰K Radioactivity (5.5, 1.8, 18.2) → (2.9, 0.95, 2.0) mBq/kg
 - Improved glass raw material and production
 - Cable : Radioactive radon emanation $1.4 \rightarrow < 0.1 \text{ mBq/m}$
 - Changed material inside cable complex from PVC to PE.
- Noise in PMT
 - After pulse : $30\% \rightarrow 5\%$ / single PE
 - Improved dynode structures, bulb cleaning and voltage ratios
 - Dark count rate : > 20 kHz \rightarrow 4 kHz at 1/6 PE
 - Optimized photocathode deposition with maximizing QE

Reached 4 kHz goal of the noise rate in 2020 → satisfied all requirements for Hyper-K. Production of 20k BL PMTs from Japan as half of Hyper-K photosensors started in late 2020.

Multi-PMT for Hyper-K and IWCD

Multi PMT R&D

28/Nov/2022

Photosensors for Outer Detector

In Super-K

Wavelength shifting (WLS) plate (60cm x 60cm x 1.3cm, 50 mg/l of bis-MSB) on white reflection sheet

by Tyvek (high density polyethylene fibres)

Characterization to select PMT type

Voltage vs Gain 1.00E+08 1.00E+07 1.00E+06 1.00E+05 900 1000 1100 1200 1300 Supply Voltage [V]

Similar structure with compact size

Comparing some different WLS plates

28/Nov/2022

Hyper-Kamiokande Project (Y. Nishimura)

32

Electronics

Preparing for test with signal, mechanical test, integration/installation planning and test, etc.

Electronics R&D

Construction Schedule

28/Nov/2022

Site Construction

PMT Inspection during Production

Mass production has started in 2020 and will end in 2026. Evaluation of performance and quality check during mass production

Delivery

Signal check

Visual inspection (Sampling)

Detailed evaluation and characterization

Mass measurement setup of 100 PMTs (from Dec 2022)

Hyper-Kamiokande Project (Y. Nishimura)

 \rightarrow

Measurement room in SK mine with 7-16 PMTs

38

And pre-calibration for reference PMTs is planned in addition.

28/Nov/2022

Prototypes of Components in the water

PMT Cover

PMT frame structure

Underwater electronics 🔲 🖬 🔤 🛶 💿 🖬 🗮

OD sensors

Prototyping of vessel, PMT cable w/ feedthrough, optical/power cable and connector 28/Nov/2022

Long baseline v from J-PARC to Hyper-K

J-PARC Upgrade

Beam Power upgrade from ~0.5 to 1.3 MW

J-PARC MR & neutrino beam-line upgrade towards 1.3MW are parts of HK project.

- J-PARC-MR:
 - MR magnet power supply upgrade
 - \leftarrow Commissioning has been started in 2022.
 - MR RF upgrade
 - MR Fast Extraction Kicker upgrade, …
- Neutrino beam-line:
 - Upgrade of target, horn (250kA→320kA), beam monitors, ...
 - Facility upgrade (cooling, radiation protection, ...)

Hyper-Kamiokande

Upgraded horns for neutrino beamline

28/Nov/2022

(Y Nishimura

Project

Near/Intermediate Detectors

Critical components to precisely understand J-PARC beam and neutrino interactions for lepton CPV search.

•On-axis detector: Measure beam direction and event rate

New for HK

•Off-axis magnetized tracker: Measure primary (anti)neutrino interaction rates, spectrum and properties. Charge separation to measure wrong-sign background

 \rightarrow Upgrade by T2K experiment and Intensive discussion for further upgrade in HK-era is on-going.

•Intermediate WC detector: H₂O target with off-axis angle spanning orientation.

 \rightarrow Detector site investigation and conceptual facility design is on-going.

+ Beam test of prototype detectors, Hadron production measurements for precision determination of J-PARC neutrino flux, etc.

28/Nov/2022

- Super-K observation has started in 1996.
 - Supernova v burst by Kamiokande, discovery of neutrino oscillation by Super-Kamiokande, and next evolution is desired.
- High sensitivity in various particle and astronomical physics
 - × 8.4 of Super-K, × 20 of accelerator neutrinos
 - ▶ With high-performance ID PMT, etc.
 - Aiming at proton decay search, discovery of v CP violation, etc.
- Hyper-K plans the operation in 2027.
 - Construction started in 2020 with Japanese budget approval.
 - Cavern excavation, PMT production, detector under preparation
 - Detector installation coming in 2026.
 - Still open for more contributions and new collaborators