Future Circular Collider & e⁺e⁻ Physics prospects, TDAQ & Politics

THE UNIVERSITY

of EDINBURGH

LHC: 27 km

Lac Léman

Christos Leonidopoulos

FCC: 91 km

Experimental Particle & Astro-particle Physics Seminar University of Zürich, 5 December 2022

4 July 2012

8 October 2013

Steel Prize.or	9 ize	œ Edu	cational 🕟 Video	Ģ
Home Nobel Prizes	and Laureates	Nomination	Ceremonies	A
a down jog wit one	and the second	a tokar	and the second second	
Nobel Prizes and Laureates	The Nobel Prize François Englert	e in Physics 2013 , Peter Higgs		
Physics Prizes	The No	bel Priz	e in	
 About the Nobel Prize in Physics 2013 Summary Prize Announcement Press Release Advanced Information Popular Information 	Physics	s 2013		
Greetings Award Ceremony Video Award Ceremony Speech François Englert				
► Peter Higgs	Photo: Pnicolet via Wikimedia Commons	Photo: G-M Greuel via Wikimedia Commons	-	
All Nobel Prizes in Physics	François Englert	Peter W. Higgs		
All Nobel Prizes in 2013	The Nobel Prize in Phy Peter W. Higgs "for th contributes to our un particles, and which r predicted fundamenta	vsics 2013 was awarded jo e theoretical discovery of derstanding of the origin ecently was confirmed th al particle, by the ATLAS a	intly to François Englert a a mechanism that of mass of subatomic rough the discovery of the and CMS experiments at	and e

CERN's Large Hadron Collider"

FCC: Physics & Politics

The Completion of the Standard Model

FCCee: a Physics Study

Published for SISSA by 🖄 Springer

RECEIVED: September 23, 2013 ACCEPTED: December 25, 2013 PUBLISHED: January 29, 2014

First look at the physics case of TLEP

JHEP 01 (2014) 164 arXiv: 1308.6176

The TLEP Design Study Workin

M. Bicer,^a H. Duran Yildiz,^b I. Yildiz,^c G. C. Grojean,^f S. Antusch,^g T. Sen,^h H.-J. H A. Moreno,^l A. Heister,^m V. Sanz,ⁿ G. Go L.-T. Wang,^p M. Dam,^q C. Boehm,^r N. G C. Leonidopoulos,^t V. Ciulli,^u P. Lenzi,^u G. U. Dosselli,^v O. Frasciello,^v C. Milardi,^v G. M. de Gruttola,^x D.-W. Kim,^y M. Bachtis, F. Carminati,^z A. David,^z L. Deniau,^z D. d G. Giudice,^z P. Janot,^z J. M. Jowett,^z C. I F. Moortgat,^z P. Musella,^z J. A. Osborne,^z A. de Roeck,^z J. Rojo,^z G. Roy,^z A. Sciabà J. Wenninger,^z H. Woehri,^z F. Zimmerman P. Mermod,^{aa} Y. Onel,^{ab} R. Talman,^{ac} E. D. Porsuk,^{af} D. Kovalskyi,^{ag} S. Padhi,^{ag} P Y. Bai,^{ak} M. Chamizo,^{al} R.B. Appleby,^{am}

ABSTRACT: The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e^+e^- collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the $t\bar{t}$ threshold and beyond. It will enable measurements of the Higgs boson properties and of Electroweak Symmetry-Breaking (EWSB) parameters with unequalled precision, offering exploration of physics beyond the Standard Model in the multi-TeV range. Moreover, being the natural precursor of the VHE-LHC, a 100 TeV hadron machine in the same tunnel, it builds up a long-term vision for particle physics. Altogether, the combination of TLEP and the VHE-LHC offers, for a great cost effectiveness, the best precision and the best search reach of all options presently on the market. This paper presents a first appraisal of the salient features of the TLEP physics potential, to serve as a baseline for a more extensive design study.

KEYWORDS: e+-e- Experiments

ARXIV EPRINT: 1308.6176

FCCee: a Physics Study

	TLEP-Z	TLEP-W	TLEP-H	TLEP-t
\sqrt{s} (GeV)	90	160	240	350
L $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	56	16	5	1.3
# bunches	4400	600	80	12
RF Gradient (MV/m)	3	3	10	20
Vertical beam size (nm)	270	140	140	100
Total AC Power (MW)	250	250	260	284
L _{int} (ab ⁻¹ /year/IP)	5.6	1.6	0.5	0.13

Table 2: Indicative costs for the main cost drivers of the TLEP collider.

Item	Cost (Million CHF)
RF system	900
Cryogenics system	200
Vacuum system	500
Magnets systems for the two rings	800
Pre-injector complex	500
Total	2,900

JHEP 01 (2014) 164 arXiv: 1308.6176

Figure 1: Target luminosities as a function of center-of-mass energy for future circular (FCC-ee, CEPC) and linear (ILC, CLIC) e^+e^- colliders under consideration.

Do we *really* need another collider?

Precision SM Measurements

Summary of SUSY searches

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary $\sqrt{s} = 7.8, 13 \text{ TeV}$

July 2018

Spin - upfi 0 <th0< th=""> 0</th0<>		Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	-1]	Mass limit		\sqrt{s} = 7, 8 TeV	$\sqrt{s} = 13 \text{ TeV}$	Reference
$ \frac{1}{2} = -\sqrt{1}^{2} \left(\frac{1}{2} + \sqrt{1}^{2} \left(\frac{1}{2} + \frac{1}{2} $	6	$\tilde{q}\tilde{q},\tilde{q}{\rightarrow}q\tilde{\chi}^0_1$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	 	0.43	0.9	1.55	$m(\tilde{\chi}_{1}^{0}) < 100 \text{ GeV}$ $m(\tilde{q})-m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}$	1712.02332 1711.03301
$ \frac{1}{12} =$	arche	$\tilde{g}\tilde{g},\tilde{g}{\rightarrow}q\bar{q}\tilde{\chi}^0_1$	0	2-6 jets	Yes	36.1	ğ B		Forbidden	2.0 0.95-1.6	$m(\tilde{\chi}_{1}^{0})$ <200 GeV $m(\tilde{\chi}_{1}^{0})$ =900 GeV	1712.02332 1712.02332
$ \frac{1}{12} = -\frac{1}{12} \left(\frac{1}{12} + \frac{1}{1$	ve Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	3 е, µ ее, µµ	4 jets 2 jets	- Yes	36.1 36.1	28 28			1.85	$m(\tilde{\chi}_{1}^{0})$ <800 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_{1}^{0})$ =50 GeV	1706.03731 1805.11381
B $b_{1} = m_{1}^{2}$ $O_{1} = a_{1}^{2} + a$	nclusi	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 3 <i>e</i> , µ	7-11 jets 4 jets	Yes	36.1 36.1	8 8		0.98	1.8	$m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	1708.02794 1706.03731
	-	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 e,μ 3 e,μ	3 b 4 jets	Yes	36.1 36.1	95° 95°			2.0 1.25	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$	1711.01901 1706.03731
$ \begin{array}{c} \\ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 36.1	$egin{array}{ccc} egin{array}{ccc} eta_1 & Forbit \ eta_1 & eta_1 \ eta_1 & eta_1 & eta_1 \end{array} \end{array}$	idden Forbidden Forbidden	0.9 0.58-0.82 0.7	$m(\tilde{\chi}_{1}^{0})=m(\tilde{\chi}_{1}^{0})=2000$	$\begin{array}{l} m(\vec{x}_{1}^{0}){=}300~\text{GeV},~BR(b\vec{x}_{1}^{0}){=}1\\ {=}300~\text{GeV},~BR(b\vec{x}_{1}^{0}){=}BR(\vec{x}_{1}^{+}){=}0.5\\ \text{GeV},~m(\vec{x}_{1}^{+}){=}300~\text{GeV},~BR(t\vec{x}_{1}^{+}){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 1706.03731
$ \begin{array}{c} \frac{1}{100} \\ \frac{1}{100} $	arks tion	$\tilde{b}_1\tilde{b}_1,\tilde{t}_1\tilde{t}_1,M_2=2\times M_1$		Multiple Multiple		36.1 36.1	τ̃ ₁ τ̃ ₁ Forbidden		0.7		$m(\tilde{\chi}_{1}^{0})=60 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247
$ \frac{1}{100} = \frac{1}{100} + 1$	gen. squi ct produc	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{H} \text{ LSP}$	0-2 <i>e</i> , <i>µ</i> 0	0-2 jets/1-2 Multiple Multiple	b Yes	36.1 36.1 36.1	τ ₁ τ ₁ τ ₁ Forb	idden	1.0 0.4-0.9 0.6-0.8	$m(\tilde{\chi}_1^0)=1500$ $m(\tilde{\chi}_1^0)=3000$	$\begin{split} \mathbf{m}(\tilde{\boldsymbol{\chi}}_{1}^{0}) &= 1 \text{ GeV} \\ \text{GeV, } \mathbf{m}(\tilde{\boldsymbol{\chi}}_{1}^{+}) &= 5 \text{ GeV, } \tilde{\boldsymbol{\imath}}_{1} \approx \tilde{\boldsymbol{\imath}}_{L} \\ \text{GeV, } \mathbf{m}(\tilde{\boldsymbol{\chi}}_{1}^{+}) &= \mathbf{m}(\tilde{\boldsymbol{\chi}}_{1}^{0}) &= 5 \text{ GeV, } \tilde{\boldsymbol{\imath}}_{1} \approx \tilde{\boldsymbol{\imath}}_{L} \end{split}$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
$ \frac{1}{2} \int_{1}^{1} \int_{1}$	3 rd dire	$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{Y}_1^0 / \tilde{c} \tilde{c}_1 \rightarrow c \tilde{Y}_1^0$	0	Multiple 2c	Yes	36.1 36.1	<i>ī</i> ₁ <i>ī</i> ,		0.48-0.84	$m(\tilde{\ell}_1^0)=150$	GeV, m($\tilde{\chi}_1^{\pm}$)-m($\tilde{\chi}_1^0$)=5 GeV, $\tilde{t}_1 \approx \tilde{t}_L$ m($\tilde{\chi}_1^0$)=0 GeV	1709.04183, 1711.11520 1805.01649
$ \frac{1}{25}, \frac{1}{5}, \frac{1}{7}, \frac{1}{7}, \frac{1}{10}, \frac{1}{10}, \frac{1}{7}, \frac{1}{10}, \frac{1}{10$		$\eta\eta,\eta \rightarrow \alpha \gamma \alpha, \epsilon \rightarrow \alpha \gamma$	0	mono-jet	Yes	36.1	\tilde{t}_1 \tilde{t}_1	0.46 0.43	0.00		$m(\tilde{t}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 50 \text{ GeV}$ $m(\tilde{t}_1, \tilde{c}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	1805.01649 1711.03301
$ \begin{split} & \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} \operatorname{u} \operatorname{WZ} & \tilde{e}_{1}^{2} e_{1}^{2} & \tilde{e}_{1}^{2} & \tilde{e}_{2}^{2} & 0.75 \\ & \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} \operatorname{u} \operatorname{Wh} & (U(f\gamma)(bb) & \cdot & \forall s & 20.3 \\ & \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} & 0.77 \\ & \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} \tilde{f}_{1}^{2} + \tau_{1}(\gamma), \tilde{f}_{2}^{2} - \tau_{1}(\gamma) & 2 & \cdot & \forall s & 20.3 \\ & \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} & 0.75 \\ & \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} \tilde{f}_{1}^{2} + \tau_{1}(\gamma), \tilde{f}_{2}^{2} - \tau_{1}(\gamma) & 2 & \cdot & \forall s & 20.3 \\ & \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} & 0.22 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} \tilde{f}_{1}^{2} + \tau_{1}(\gamma), \tilde{f}_{2}^{2} - \tau_{1}(\gamma) & 2 & \cdot & \forall s & 20.3 \\ & \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} & 0.22 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} \tilde{f}_{1}^{2} + \tau_{1}(\gamma), \tilde{f}_{2}^{2} - \tau_{1}(\gamma) & 2 & \cdot & \forall s & 30.1 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} & 0.75 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} \tilde{f}_{1}^{2} + \tau_{1}(\gamma), \tilde{f}_{2}^{2} - \tau_{1}(\gamma) & 2 & \cdot & \forall s & 30.1 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} & 0.22 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} \tilde{f}_{1}^{2} + \tilde{f}_{2}^{2} + 0 & 0 & \forall s & 30.1 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} & 0.18 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} \tilde{f}_{1}^{2} + 0.18 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{2}^{2} + 0 & 0 & \forall s & 30.1 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1} \tilde{f}_{2}^{2} & 0.18 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} + 0.18 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} + 0.18 \\ & \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} \tilde{f}_{1}^{2} + 0.18 \\ & \tilde{f}_{1}^{2} $		$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 <i>e</i> , <i>µ</i>	4 <i>b</i>	Yes	36.1	ī ₂		0.32-0.88	m(\vec{t}	${}^{_{0}}_{_{1}})=0 \text{ GeV, } m(\tilde{t}_{1})-m(\tilde{t}_{1}^{_{0}})=180 \text{ GeV}$	1706.03986
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e,μ ee,μμ	≥ 1	Yes Yes	36.1 36.1	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.17		0.6		$m(\tilde{\chi}_1^0)=0$ $m(\tilde{\chi}_1^{\pm})$ - $m(\tilde{\chi}_1^0)=10~GeV$	1403.5294, 1806.02293 1712.08119
$ \frac{1}{2} \frac{1}{6} \frac{1}{k_{1k}^{2} (L_{k}, \tilde{l} \rightarrow l \tilde{k}_{1}^{0})}{\frac{1}{6} (L_{k}, \tilde{l} \rightarrow l \tilde{k}_{1}^{0})} = \frac{2 e_{, \mu}}{2 e_{, \mu}} \frac{2}{\geq 1} \text{Ves} 36.1 \tilde{l} \textbf{0.18} \qquad \textbf{0.18} $	EW irect	$ \begin{split} \tilde{\chi}_1^+ \tilde{\chi}_2^0 via Wh \\ \tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_2^0, \tilde{\chi}_1^+ {\rightarrow} \tilde{\tau} \nu(\tau \tilde{\nu}), \tilde{\chi}_2^0 {\rightarrow} \tilde{\tau} \tau(\nu \tilde{\nu}) \end{split} $	<i>ℓℓ/ℓγγ/ℓbb</i> 2 τ	-	Yes Yes	20.3 36.1	$\begin{array}{ccc} \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} & 0.20 \\ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} & \\ \tilde{\chi}_{1}^{\pm} / \tilde{\chi}_{2}^{0} & 0.22 \end{array}$	6	0.76	$m(ilde{\chi}_1^{\pm}) - m(ilde{\chi}_1^{0}) = 10$	$m(\tilde{\chi}_{1}^{0})=0$ $\tilde{\chi}_{1}^{0})=0, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 0 GeV, $m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1501.07110 1708.07875 1708.07875
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} {\rightarrow} \ell \tilde{\chi}_1^0$	2 e,μ 2 e,μ	0 ≥ 1	Yes Yes	36.1 36.1	₹ ₹ 0.18	0.5			$m(\tilde{\ell}_1^0)=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	1803.02762 1712.08119
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ĤĤ, Ĥ→hĜ/ZĜ	0 4 <i>e</i> , <i>µ</i>	$\geq 3b$ 0	Yes Yes	36.1 36.1	Й Й	0.3	0.29-0.88		$BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	1806.04030 1804.03602
Stale \tilde{g} R-hadron SMP · </td <td>bed Se</td> <td>$\operatorname{Direct} \tilde{\chi}_1^* \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm$</td> <td>Disapp. trk</td> <td>1 jet</td> <td>Yes</td> <td>36.1</td> <td></td> <td>0.46</td> <td></td> <td></td> <td>Pure Wino Pure Higgsino</td> <td>1712.02118 ATL-PHYS-PUB-2017-019</td>	bed Se	$\operatorname{Direct} \tilde{\chi}_1^* \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1		0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Go degree Metastable & H-hadron, $\frac{2}{2} - qqr_1$, withinke Withinke 32.5 k (k) (k) = 100 fms. 0.2 mig 1.6 2.4 m(k) = 100 GeV 1710.04801, 1604,04520 GMSB, $k_1^0 \rightarrow qr_0$, long-lived \tilde{k}_1^0 2 γ - Yes 20.3 k 1.4 2.4 m(k) = 100 GeV 1409,5542 Image: Constraint of the constraint of th	g-liv ticle	Stable g R-hadron	SMP	- Multiple	-	3.2	ğ			1.6		1606.05129
$\frac{1}{\hat{g}, \hat{\chi}_{1}^{0} - \epsilon e v/(\mu v)/(\mu v)} \frac{d g }{g \hat{g}, \hat{\chi}_{1}^{0} - \epsilon e v/(\mu \mu)} - \frac{1}{2} - \frac{2}{2} - \frac{1}{2} + $	par	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq\chi_1$ GMSB $\tilde{\chi}^0 \rightarrow \chi \tilde{G}$ long-lived $\tilde{\chi}^0$.	2γ	wulliple	Yes	32.8 20.3	$g = [\tau(g) = 100 \text{ ns}, 0.2 \text{ ns}]$ $\tilde{\chi}_{i}^{0}$	0.44		1.6 2.4	$m(\mathcal{X}_1)=100 \text{ GeV}$ $1 < \tau(\tilde{\mathcal{X}}_1^0) < 3 \text{ ns. SPS8 model}$	1409.5542
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	$\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\muv/\mu\muv$	displ. ee/eµ/µ	μ -	-	20.3	<u>ĝ</u>			1.3 6	$<_{cr}(\tilde{\chi}_{1}^{0}) < 1000 \text{ mm, m}(\tilde{\chi}_{1}^{0}) = 1 \text{ TeV}$	1504.05162
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	εμ,ετ,μτ			3.2	$\tilde{\nu}_{\tau}$			1.9	λ' ₃₁₁ =0.11, λ _{132/133/233} =0.07	1607.08079
$ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \qquad 0 4-5 \; arge-R \; ets \ - \ 36.1 \\ Multiple & 36.1 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow tbs \; (\tilde{g} \rightarrow t\tilde{g}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs \\ \tilde{f}_{1}\tilde{f}_{1}, \tilde{f}_{1} \rightarrow tbs \\ \tilde{f}_{1}\tilde{f}_{1}, \tilde{f}_{1} \rightarrow bs \; 0 2 \; ets \ 2 \; b - \ 36.1 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow tbs \; (\tilde{g} \rightarrow t\tilde{g}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs \\ \tilde{f}_{1}\tilde{f}_{1}, \tilde{f}_{1} \rightarrow tbs \; 0 2 \; ets \ 2 \; b - \ 36.1 \\ \tilde{f}_{1}\tilde{f}_{1}, \tilde{f}_{1} \rightarrow tbs \; 0 2 \; ets \ 2 \; b - \ 36.1 \\ \tilde{f}_{1}\tilde{f}_{1}, \tilde{f}_{1} \rightarrow bs \; 0 2 \; ets \ 2 \; b - \ 36.1 \\ \tilde{f}_{1}\tilde{f}_{1}, \tilde{f}_{1} \rightarrow bt \; 0 2 \; ets \ 2 \; b - \ 36.1 \\ \tilde{f}_{1}\tilde{f}_{1}, \tilde{f}_{1} \rightarrow bt \; 0 2 \; ets \ 2 \; b - \ 36.1 \\ \tilde{f}_{1}\tilde{f}_{1}, \tilde{f}_{1} \rightarrow bt \; 0 2 \; ets \ 2 \; b - \ 36.1 \\ \tilde{f}_{1}\tilde{f}_{1} = 0 0.42 0.61 \\ \tilde{f}_{1}\tilde{f}_{1} = 0 0.44 0$		$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$	4 e, µ	0	Yes	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.82	1.33	$m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1804.03602
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	0 4-	5 large-R j Multiple	ets -	36.1	$\tilde{g} = [m(\tilde{\chi}_1^0) = 200 \text{ GeV}, 1100 \text{ Ge})$	eV]	1.0	1.3 1.9	Large $\lambda_{112}^{"}$	1804.03568
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	J d E	~~ ~		Multiple		30.1	$\tilde{e} [\lambda'' = 1, 1e-2]$		1.0	19.01	$m(\chi_1)=200$ GeV, bino-like	ATLAS-CONF-2018-003
$\vec{i}_1, \vec{i}_1, \vec{i}_2 \to b = 0$ $\vec{i}_1, \vec{i}_1, \vec{i}_1 \to b \neq 0$ $\vec{i}_1, \vec{i}_1 \to b \neq 0$ $\vec{i}_1, \vec{i}_1, \vec{i}_1 \to b \neq 0$ $\vec{i}_1, \vec{i}_1 \to $	-	$gg, g \to ibs / g \to i\lambda_1, \lambda_1 \to ibs$ $\tilde{t}\tilde{t} \to t\tilde{V}^0, \tilde{V}^0 \to tbs$		Multiple		36.1	$\tilde{g} = [\lambda''_{323} = 2e-4, 1e-2]$	0.55	5 1.0	5	$m(\tilde{\chi}_1)=200 \text{ GeV, bino-like}$ $m(\tilde{\chi}_1^0)=200 \text{ GeV, bino-like}$	ATLAS-CONF-2018-003
τ ₁ τ ₁ , τ ₁ →bℓ 2 e,μ 2 b 36.1 τ ₁ 0.4-1.45 BR(τ ₁ →be/bμ)>20% 1710.05544		$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	0	2 jets + 2 l	ь -	36.7	$\tilde{t}_1 [qq, bs]$	0.42 0	0.61		11(1)=200 000, 0110-1100	1710.07171
		$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$	2 e, µ	2 <i>b</i>	-	36.1	ĩ ₁			0.4-1.45	$BR(\tilde{t}_1 \rightarrow be/b\mu) > 20\%$	1710.05544
"Only a selection of the available mass limits on new states or 10."	*Onlv	a selection of the available mas	s limits on n	new state	es or	1	0 ⁻¹			1		1

Summary of SUSY searches

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

Ju	ly 2018 Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	¹] Mass limit	\sqrt{s} = 7, 8 TeV	$\sqrt{s} = 13 \text{ TeV}$	\sqrt{s} = 7, 8, 13 TeV Reference
Inclusive Searches	$\begin{split} \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} (\ell \ell) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \end{split}$	0 mono-jet 0 3 e, µ ee, µµ 0 3 e, µ 0-1 e, µ 3 e, µ	2-6 jets 1-3 jets 2-6 jets 4 jets 2 jets 7-11 jets 4 jets 3 <i>b</i> 4 jets	Yes Yes - Yes - Yes - Yes -	36.1 36.1 36.1 36.1 36.1 36.1 36.1 36.1	ğ [2x, 8x Degen.] 0.9 ğ [1x, 8x Degen.] 0.43 0.71 š Forbidden 5 š \$	1.55 2.0 0.95-1.6 1.85 1.2 1.8 1.8 2.0 1.25	$\begin{split} m(\tilde{t}_{1}^{2}) < 100 \ \text{GeV} \\ m(\tilde{q}) - m(\tilde{t}_{1}^{2}) &= 5 \ \text{GeV} \\ m(\tilde{q}_{1}^{2}) - m(\tilde{t}_{1}^{2}) &= 5 \ \text{GeV} \\ m(\tilde{t}_{1}^{2}) < 200 \ \text{GeV} \\ m(\tilde{t}_{1}^{2}) &= 600 \ \text{GeV} \\ m(\tilde{g}) - m(\tilde{t}_{1}^{2}) &= 50 \ \text{GeV} \\ m(\tilde{g}) - m(\tilde{t}_{1}^{2}) &= 50 \ \text{GeV} \\ m(\tilde{g}) - m(\tilde{t}_{1}^{2}) &= 200 \ \text{GeV} \\ m(\tilde{q}^{2}) - m(\tilde{t}_{1}^{2}) &= 200 \ \text{GeV} \\ m(\tilde{q}^{2}) - m(\tilde{t}_{1}^{2}) &= 300 \ \text{GeV} \end{split}$	1712.02332 1711.03301 1712.02332 1712.02332 1706.03731 1805.11381 1708.02794 1706.03731 1711.01901 1706.03731
3 nd gen. squarks direct production	$ \begin{array}{c} \overset{i}{\scriptstyle i} & No \\ \overset{i}{\scriptstyle i} & \underset{i_1,i_1,i_2 \to i_1+h}{No_{i_1}} \\ \overset{i}{\scriptstyle i} & \underset{i_2 \to i_1+h}{No_{i_1}} \\ \end{array} $	evic	SU SU 2c 4b	n (rp Yes Yes Yes	2000 2000 36.1 36.1 36.1	of SUSY (yet) ses of LHC se): One earche	of the es so fa m(t_1)=0 GeV m(t_1,2)=m(t_1^2)=5 GeV n(t_1,2)=m(t_1^2)=5 GeV n)=0 GeV, m(t_1)=180 GeV	09266,1711.03301 1708.09266 1706.03731 1711.11520,1708.03247 .1711.11520,1708.03247 .1719.04183,1711.11520 04183,1711.11520 04183,1711.11520 04183,1711.11520 04183,1711.11520 1805.01649 1805.01649 1805.01649 1711.03301 1706.03986
EW direct	$\begin{split} \tilde{\chi}^{\pm}_{1}\tilde{\chi}^{0}_{2} \mbox{via} WZ \\ \tilde{\chi}^{\pm}_{1}\tilde{\chi}^{0}_{2} \mbox{via} Wh \\ \tilde{\chi}^{\pm}_{1}\tilde{\chi}^{0}_{1}, \tilde{\chi}^{0}_{2}, \tilde{\chi}^{+}_{1} \rightarrow \tilde{r}\nu(\tau\tilde{\nu}), \tilde{\chi}^{0}_{2} \rightarrow \tilde{r}\tau(\nu\tilde{\nu}) \\ \tilde{\ell}_{LR}\tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell\tilde{\chi}^{0}_{1} \\ \tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G} \end{split}$	2-3 e, μ ee, μμ ℓ(/(γγ/lbb 2 τ 2 e, μ 2 e, μ 0 4 e, μ	≥ 1 $-$ 0 ≥ 1 $\geq 3b$ 0	Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 20.3 36.1 36.1 36.1 36.1 36.1 36.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$m(\tilde{x}_1^*)-m(\tilde{x}_1^0)=10$	$\begin{array}{c} \mathfrak{m}(\tilde{\xi}_{1}^{0})\!=\!0\\ \mathfrak{m}(\tilde{\xi}_{1}^{+})\!-\!\mathfrak{m}(\tilde{\xi}_{1}^{0})\!=\!10\ \mathrm{GeV}\\ \mathfrak{m}(\tilde{\xi}_{1}^{+})\!=\!0\ \mathrm{GeV}\\ \mathfrak{m}(\tilde{\xi}_{1}^{0})\!=\!0\\ \mathfrak{m}(\tilde{\xi}_{1}^{0})\!=\!0.5(\mathfrak{m}(\tilde{\xi}_{1}^{+})\!+\!\mathfrak{m}(\tilde{\xi}_{1}^{0}))\\ \mathfrak{m}(\tilde{g})\!=\!0.5(\mathfrak{m}(\tilde{\xi}_{1}^{+})\!+\!\mathfrak{m}(\tilde{\xi}_{1}^{0}))\\ \mathfrak{m}(\tilde{g})\!=\!0\\ \mathfrak{m}(\tilde{g})\!-\!\mathfrak{m}(\tilde{\xi}_{1}^{0})\!=\!0\\ \mathfrak{m}(\tilde{g})\!-\!\mathfrak{m}(\tilde{\xi}_{1}^{0})\!=\!0\\ \mathfrak{m}(\tilde{g})\!-\!\mathfrak{m}(\tilde{\xi}_{1}^{0})\!=\!1\\ \mathfrak{BR}(\tilde{\xi}_{1}^{0}\rightarrow ZG)\!=\!1\\ \end{array}$	1403.5294, 1806.02293 1712.08119 1501.07110 1708.07875 1708.07875 1803.02762 1712.08119 1806.04030 1804.03602
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow q\tilde{c}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu \mu v$	Disapp. trk SMP 2 y displ. ee/eµ/µµ	1 jet - Multiple - 4 -	Yes - Yes -	36.1 3.2 32.8 20.3 20.3	\hat{x}_{1}^{\pm} 0.46 \hat{x}_{1}^{\pm} 0.15 \hat{x}_{1}^{\pm} [rt(\hat{x}) = 100 ns. 0.2 ns] \hat{x}_{1}^{0} 0.44 \hat{x}	1.6 1.6 2.4 1.3 6	Pure Wino Pure Higgsino $m(\tilde{t}_1^0){=}100 \text{ GeV}$ $1{<}r(\tilde{t}_1^0){<}3 \text{ ns}, SPS8 \text{ model}$ ${<}r(\tilde{t}_1^0){<}1000 \text{ mm}, m(\tilde{t}_1^0){=}1 \text{ TeV}$	1712.02118 ATL-PHYS-PUB-2017-019 1606.05129 1710.04901, 1604.04520 1409.5542 1504.05162
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \tilde{\mathbf{v}}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow tbs / \tilde{g} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs \\ \tilde{t}, \tilde{t} \rightarrow t\delta_{1}^{0}, \tilde{x}_{1}^{0} \rightarrow tbs \\ \tilde{t}_{1}\tilde{t}, \tilde{t}_{1} \rightarrow bs \\ \tilde{t}_{1}\tilde{t}, \tilde{t}_{1} \rightarrow b\ell \end{array} $	еµ,ет,µт 4 е, µ 0 4-5 0 2 е, µ	- 0 5 large- <i>R</i> je Multiple Multiple Multiple 2 jets + 2 <i>b</i> 2 <i>b</i>	- Yes ets -	3.2 36.1 36.1 36.1 36.1 36.1 36.7 36.7	$ \begin{array}{c} \bar{v}_{r} \\ \bar{x}_{1}^{*}/\bar{x}_{2}^{0} & [\lambda_{33} \neq 0, \lambda_{12k} \neq 0] & 0.82 \\ \bar{x}_{1}^{*}/\bar{x}_{2}^{0} & [\lambda_{333} \neq 0, \lambda_{12k} \neq 0] & 0.82 \\ \bar{x}_{1}^{*}/\bar{x}_{2}^{0} = (\lambda_{12} + \lambda_{2} $	1.9 1.3 5 2.0 1.8 2.1 05 0.4-1.45	$\begin{split} \lambda'_{311} = & 0.11, \ \lambda_{132/133/233} = & 0.07 \\ & m(\tilde{\kappa}_1^0) = & 100 \ \text{GeV} \\ & \text{Large} \ \lambda''_{112} \\ & m(\tilde{\kappa}_1^0) = & 200 \ \text{GeV}, \ \text{bino-like} \\ & m(\tilde{\kappa}_1^0) = & 200 \ \text{GeV}, \ \text{bino-like} \\ & m(\tilde{\kappa}_1^0) = & 200 \ \text{GeV}, \ \text{bino-like} \\ & \text{BR}(\tilde{r}_1 \to be/b\mu) > & 20\% \end{split}$	1607.08079 1804.03602 1804.03568 ATLAS-CONF-2018-003 ATLAS-CONF-2018-003 ATLAS-CONF-2018-003 1710.07171 1710.05544
*Only a	a selection of the available ma	ss limits on n	ew state	s or	1()-1	1 <u> </u>	Mass scale [TeV]	

· -

Diphoton resonance December 2015

Diphoton resonance December 2015

10⁻³

10-4

5×10²

August 2016

Observed J=0

Observed J=2

10³

3σ

3×10³

4×10³

 $m_{\rm x}$ (GeV)

2×10³

Theoretical confusion

Nima Arkani-Hamed:

"It's striking that we've thought about these things for 30 years and we have not made one correct prediction"

Theoretical confusion

Nima Arkani-Hamed:

"It's striking that we've thought about these things for 30 years and we have not made one correct prediction"

- The days of "guaranteed" discoveries or of no-lose theorems in particle physics are over, at least for the time being
- ...But the big questions of our field remain wild open (hierarchy problem, flavour, neutrinos, DM, BAU,)
- This simply implies that, more than for the past 30 years, future HEP's progress is to be driven by experimental exploration, possibly renouncing/reviewing deeply rooted theoretical bias

Michelangelo Mangano

Colliders: decades-long experience

European Strategy for Particle Physics: 2020

"An electron-positron Higgs factory is the highest priority next collider. For the longer term, the European particle physics community has the ambition to operate a p-p collider at the highest achievable energy."

"Europe, together with its international partners, should investigate the technical & financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and EWK factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update."

- FS: to be carried out 2021-25
- Mid-term review in Autumn 23
- Will cover the integrated program (FCCee & FCChh)

The Integrated FCC project

Integrated FCC (ee+hh) like LEP & LHC

Comprehensive long-term program maximising physics

- Stage-1: FCCee (Z, W, H, t) as Higgs, EWK and top factory
- Stage-2: FCChh (100 TeV) as natural continuation at energy frontier with ion and e-p options
- Complementary physics
- Common civil engineering & technical infrastructure, exploiting CERN's know-how & infrastructure
- Seamless continuation of collider program after completion of HL-LHC

Timeline

- 2023: Mid-term review (update on FCCee & hh physics cases)
- 2028: Council decision on FCC (?)
- 2032-40: Tunnel excavation
- 2039-45: Accelerator & experiments installation
- 2041: End of HL-LHC (with 3 ab⁻¹ of data accumulated)
- 2045-60: FCCee physics programme
- 2070-90++: FCChh physics programme
- No removal of LHC infrastructure needed prior to FCC start
- Also options for PbPb, ep and e-Pb running

Placement

- More than 100 possible alignments studied recently
- Comparison of all these options was done using rigorous multi-criteria process in order to arrive at reasonable & transparent outcome

Placement

- Finally an 8-point configuration was deemed optimal
- Four-fold periodicity allows for 4 experimental sites/IPs

PROS: CONS: 8 sites use less land (36 ha vs. 62 ha) Smaller (91 km vs. 98 km) Possibility for 4 FCC-ee experiment sites Longer distance between sites generates different requirements and constraints for All sites close to road infrastructures (3.5 km of technical infrastructures (water supply, electricity, road constructions needed for all sites) cryogenics, tunnel transport) RF sites close to 400 kV grid lines Only a single shaft to experiment cavern PA profits from LHC Pt8 infrastructures and main Some technical shafts are displaced along the ring

Deepest shaft at PF (400 m) requires a horizontal connection tunnel to the ring at the bottom of the shaft (400 m long

y and geology nce to << 100 km Plaine du Genevoe teau du Mont Sion Plateau des Borr 600 - 850 m/

CERN cooling water supply line

Less excavated materials

Good connection of PD, PF, PG, PH to Annecy putting IN2P3/LAPP in the position to acts as a second pole for design, construction and operation.

The Physics Case

• EPJ+ special issue with 34 papers covering physics, theory, accelerator, detectors, software & online aspects of FCCee

2	Int	roduction (2 essays)	3		
	2.1	Physics landscape after the Higgs discovery [1]	3		
	2.2	Building on the Shoulders of Giants [2]	3		
3	Par from	t I: The next big leap – New Accelerator technologies to reach the precision ntier [3] (6 essays)	4		
	3.1	FCC-ee: the synthesis of a long history of e^+e^- circular colliders [4]	4		
	3.2	RF system challenges	4		
	3.3	How to increase the physics output per MW.h?	4		
	3.4	IR challenges and the Machine Detector Interface at FCC-ee [5]	4 10	From physics benchmarks to detector requirements [18]	8
	3.5	The challenges of beam polarization and keV-scale center-of-mass energy calibration	4 11	Calorimetry at FCC-ee [19]	8
	3.6	The challenge of monochromatization [7]	4 12	Tracking and vertex detectors at ECC-on [20]	8
			4.12	Muon detection at ECC or [21]	0
4	Par	Commission new physics opportunities and challenges towards discovery [8] (15 essay	4.13	Challenges for ECC on Luminosity Monitor Design [22]	9
	4.1	Uverview: new physics opportunities create new chanenges [9]	4.14	Particle Identification at ECC on [22]	10
	4.2	Higgs and top challenges at FCC-ee [10]	4.10	raticle identification at rCC -ee [25]	10
	4.9	Z line share shall so see a second laW so so so to [11]			
	4.3	Z line shape challenges : ppm and keV measurements [11]	Par	t III: Theoretical challenges at the precision frontier [24] (7 essays)	10
	4.3 4.4	Z line shape challenges : ppm and keV measurements [11]	Par 5.1	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction	10 10
	4.3 4.4 4.5	Z line shape challenges : ppm and keV measurements [11] 5 Heavy quark challenges at FCC-ee [12] 5 The tau challenges at FCC-ee [13] 1 Hunting for rare processes and long lived particles at FCC co [14]	Par 5.1 5.2	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction	10 10 10
	4.3 4.4 4.5 4.6 4.7	Z line shape challenges : ppm and keV measurements [11] 5 Heavy quark challenges at FCC-ee [12] 5 The tau challenges at FCC-ee [13] 5 Hunting for rare processes and long lived particles at FCC-ee [14] 5 The W mass and width challenges at FCC co [15] 5	Par 5.1 5.2 5.3	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction	10 10 10
	4.3 4.4 4.5 4.6 4.7 4.8	Z line shape challenges : ppm and keV measurements [11]	Par 5.1 5.2 5.3 5.4	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction Theory challenges for electroweak and Higgs calculations [25] Theory challenges for QCD calculations New Physics at the ECC-ee: Indirect discovery potential [26]	10 10 10 11
	 4.3 4.4 4.5 4.6 4.7 4.8 	Z line shape challenges : ppm and keV measurements [11] 5 Heavy quark challenges at FCC-ee [12] 5 The tau challenges at FCC-ee [13] 6 Hunting for rare processes and long lived particles at FCC-ee [14] 6 The W mass and width challenge at FCC-ee [15] 6 A special Higgs challenge: Measuring the electron Yukawa coupling via s-channe Higgs production [16] 6	Par 5.1 5.2 5.3 5.4 5.5	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction Theory challenges for electroweak and Higgs calculations [25] Theory challenges for QCD calculations New Physics at the FCC-ee: Indirect discovery potential [26] Direct discovery of new light states [27]	10 10 10 11 11
	4.3 4.4 4.5 4.6 4.7 4.8 4.9	Z line shape challenges : ppm and keV measurements [11] 5 Heavy quark challenges at FCC-ee [12] 5 The tau challenges at FCC-ee [13] 6 Hunting for rare processes and long lived particles at FCC-ee [14] 6 The W mass and width challenge at FCC-ee [15] 7 A special Higgs challenge: Measuring the electron Yukawa coupling via s-channel Higgs production [16] 7 A special Higgs challenge: Measuring the mass and cross section with ultimat 7	Par 5.1 5.2 5.3 5.4 5.5 5.6	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction Theory challenges for electroweak and Higgs calculations [25] Theory challenges for QCD calculations New Physics at the FCC-ee: Indirect discovery potential [26] Direct discovery of new light states [27] Theoretical challenges for flavour physics [28]	 10 10 11 11 11 11
	 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Z line shape challenges : ppm and keV measurements [11] 5 Heavy quark challenges at FCC-ee [12] 5 The tau challenges at FCC-ee [13] 6 Hunting for rare processes and long lived particles at FCC-ee [14] 6 The W mass and width challenge at FCC-ee [15] 7 A special Higgs challenge: Measuring the electron Yukawa coupling via s-channed Higgs production [16] 7 A special Higgs challenge: Measuring the mass and cross section with ultimat precision [17] 7	Par 5.1 5.2 5.3 5.4 5.5 5.6 5.6 5.7	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction Theory challenges for electroweak and Higgs calculations [25] Theory challenges for QCD calculations New Physics at the FCC-ee: Indirect discovery potential [26] Direct discovery of new light states [27] Theoretical challenges for flavour physics [28] Challenges for tau physics at the Teraz [29]	 10 10 11 11 11 11 11 11
	 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Z line shape challenges : ppm and keV measurements [11]	Par 5.1 5.2 5.3 5.4 5.5 5.6 5.7	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction Theory challenges for electroweak and Higgs calculations [25] Theory challenges for QCD calculations New Physics at the FCC-ee: Indirect discovery potential [26] Direct discovery of new light states [27] Theoretical challenges for flavour physics [28] Challenges for tau physics at the TeraZ [29]	 10 10 11 11 11 11 11
	4.3 4.4 4.5 4.6 4.7 4.8 4.9	Z line shape challenges : ppm and keV measurements [11] 5 Heavy quark challenges at FCC-ee [12] 5 The tau challenges at FCC-ee [13] 6 Hunting for rare processes and long lived particles at FCC-ee [14] 5 The W mass and width challenge at FCC-ee [15] 6	Par 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Par	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction Theory challenges for electroweak and Higgs calculations [25] Theory challenges for QCD calculations New Physics at the FCC-ee: Indirect discovery potential [26] Direct discovery of new light states [27] Theoretical challenges for flavour physics [28] Challenges for tau physics at the TeraZ [29] t IV: Software Dev. & Computational challenges (4 essays)	 10 10 11 11 11 11 11 11
	4.3 4.4 4.5 4.6 4.7 4.8 4.9	Z line shape challenges : ppm and keV measurements [11]	Par 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Par 6.1	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction Theory challenges for electroweak and Higgs calculations [25] Theory challenges for QCD calculations New Physics at the FCC-ee: Indirect discovery potential [26] Direct discovery of new light states [27] Theoretical challenges for flavour physics [28] Challenges for tau physics at the TeraZ [29] t IV: Software Dev. & Computational challenges (4 essays) Key4hep, a framework for future HEP experiments and its use in FCC	 10 10 11 11 11 11 11 11 11
	4.3 4.4 4.5 4.6 4.7 4.8 4.9	Z line shape challenges : ppm and keV measurements [11]	Par 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Par 6.1 6.2	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction Theory challenges for electroweak and Higgs calculations [25] Theory challenges for QCD calculations New Physics at the FCC-ee: Indirect discovery potential [26] Direct discovery of new light states [27] Theoretical challenges for flavour physics [28] Challenges for tau physics at the TeraZ [29] t IV: Software Dev. & Computational challenges (4 essays) Key4hep, a framework for future HEP experiments and its use in FCC Offline computing resources and approaches for sustainable computing	 10 10 11
	4.3 4.4 4.5 4.6 4.7 4.8 4.9	Z line shape challenges : ppm and keV measurements [11] 5 Heavy quark challenges at FCC-ee [12] 5 The tau challenges at FCC-ee [13] 6 Hunting for rare processes and long lived particles at FCC-ee [14] 6	Par 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Par 6.1 6.2 6.3	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction Theory challenges for electroweak and Higgs calculations [25] Theory challenges for QCD calculations New Physics at the FCC-ee: Indirect discovery potential [26] Direct discovery of new light states [27] Theoretical challenges for flavour physics [28] Challenges for tau physics at the TeraZ [29] t IV: Software Dev. & Computational challenges (4 essays) Key4hep, a framework for future HEP experiments and its use in FCC Offline computing resources and approaches for sustainable computing Accelerator-related codes and interplay with FCCSW	10 10 11 11 11 11 11 11 11 11 11 11
- USC	4.3 4.4 4.5 4.6 4.7 4.8 4.9	Z line shape challenges : ppm and keV measurements [11] 5 Heavy quark challenges at FCC-ee [12] 5 The tau challenges at FCC-ee [13] 6 Hunting for rare processes and long lived particles at FCC-ee [14] 6	Par 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Par 6.1 6.2 6.3 6.4	t III: Theoretical challenges at the precision frontier [24] (7 essays) Overall perspective and introduction Theory challenges for electroweak and Higgs calculations [25] Theory challenges for QCD calculations New Physics at the FCC-ee: Indirect discovery potential [26] Direct discovery of new light states [27] Theoretical challenges for flavour physics [28] Challenges for tau physics at the TeraZ [29] t IV: Software Dev. & Computational challenges (4 essays) Key4hep, a framework for future HEP experiments and its use in FCC Offline computing resources and approaches for sustainable computing Accelerator-related codes and interplay with FCCSW Online computing challenges: detector & readout requirements [30]	10 10 11 11 11 11 11 11 11 11 11 11 11

- Full energy scan to access all heavy SM particles
- Highest luminosity
- Highest \sqrt{s} precision

- Full energy scan to access all heavy SM particles
- Highest luminosity
- Highest \sqrt{s} precision

CC: Physics & Politics

Precision Higgs measurements

Collider	HL-LHC	$\text{FCC-ee}_{240 \rightarrow 365}$	FCC-INT]	
Lumi (ab^{-1})	3	5 + 0.2 + 1.5	30]	
Years	10	3 + 1 + 4	25]	
g_{HZZ} (%)	1.5	0.18 / 0.17	0.17/0.16		
$g_{\rm HWW}$ (%)	1.7	0.44 / 0.41	0.20/0.19		
$g_{ m Hbb}~(\%)$	5.1	0.69 / 0.64	0.48/0.48	ρρ	
$g_{ m Hcc}~(\%)$	SM	1.3 / 1.3	0.96/0.96		arXiv:2106.13885
g_{Hgg} (%)	2.5	1.0 / 0.89	0.52/0.5		
$g_{\mathrm{H} au au}$ (%)	1.9	0.74 / 0.66	0.49/0.46		
$g_{\mathrm{H}\mu\mu}$ (%)	4.4	8.9 / 3.9	0.43/0.43		
$g_{\mathrm{H}\gamma\gamma}$ (%)	1.8	3.9 / 1.2	0.32/0.32		
$g_{\mathrm{HZ}\gamma}$ (%)	11.	- / 10.	0.71/0.7	nn	
$g_{ m Htt}$ (%)	3.4	10. / 3.1	1.0/0.95		
a	50	44./33.	3.4]	
9HHH (70)	50.	27./24.	5-4		
$\Gamma_{\rm H}$ (%)	SM	1.1	0.91	ee	
BR_{inv} (%)	1.9	0.19	0.024	pp	
BR_{EXO} (%)	SM(0.0)	1.1	1	ee ee	

- FCCee measures g_{ZZH} to 0.2% (absolute, model independent) from σ_{ZH}
 - Fixes all other couplings
- FCChh produces 10B Higgs bosons, 100M $t\bar{t}H$, 20M HH pairs
 - Determines $g_{H\mu\mu}$, $g_{H\gamma\gamma}$, $g_{HZ\gamma}$, $BR(H \rightarrow inv)$
- FCCee measures *ttZ* couplings

Unique FCCee/FCChh complementarity

Precision EWK measurements

Observable	present	FCC-ee	FCC-ee	Comment and
	value \pm error	Stat.	Syst.	leading exp. error
$m_{\rm Z} (\rm keV)$	91186700 ± 2200	4	100	From Z line shape scan
				Beam energy calibration
$\Gamma_{\rm Z}$ (keV)	2495200 ± 2300	4	25	From Z line shape scan
				Beam energy calibration
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480 ± 160	2	2.4	from $A_{FB}^{\mu\mu}$ at Z peak
				Beam energy calibration
$1/\alpha_{\rm QED}({ m m}_{ m Z}^2)(imes 10^3)$	128952 ± 14	3	small	from $A_{FB}^{\mu\mu}$ off peak
				QED&EW errors dominate
R_{ℓ}^{Z} (×10 ³)	20767 ± 25	0.06	0.2-1	ratio of hadrons to leptons
				acceptance for leptons
$\alpha_{\rm s}({\rm m}_{\rm Z}^2)~(\times 10^4)$	1196 ± 30	0.1	0.4 - 1.6	from R_{ℓ}^{Z} above
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541 ± 37	0.1	4	peak hadronic cross section
				luminosity measurement
$N_{\nu}(\times 10^3)$	2996 ± 7	0.005	1	Z peak cross sections
				Luminosity measurement
$R_{\rm b} ~(\times 10^6)$	216290 ± 660	0.3	< 60	ratio of bb to hadrons
				stat. extrapol. from SLD
$A_{FB}^{b}, 0 \ (\times 10^{4})$	992 ± 16	0.02	1-3	b-quark asymmetry at Z pole
				from jet charge
$A_{FB}^{pol,\tau}$ (×10 ⁴)	1498 ± 49	0.15	$<\!\!2$	τ polarization asymmetry
				τ decay physics
τ lifetime (fs)	290.3 ± 0.5	0.001	0.04	radial alignment
$\tau \text{ mass (MeV)}$	1776.86 ± 0.12	0.004	0.04	momentum scale
$ \tau $ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38 ± 0.04	0.0001	0.003	e/μ /hadron separation
$m_W (MeV)$	80350 ± 15	0.25	0.3	From WW threshold scan
	2005 1 42	1.0	0.0	Beam energy calibration
Γ_{W} (MeV)	2085 ± 42	1.2	0.3	From WW threshold scan
(2)(-104)	1150 1 100			Beam energy calibration
$\alpha_{\rm s}({\rm m_W})(\times 10^{-})$	1170 ± 420	3	small	from R_{ℓ}
$N_{\nu}(\times 10^{\circ})$	2920 ± 50	0.8	small	ratio of invis. to leptonic
				in radiative Z returns
m _{top} (MeV/c ⁻)	172740 ± 500	17	small	From tt threshold scan
D (24 2)	4.446 - 1.465			QCD errors dominate
T _{top} (MeV/c ⁻)	1410 ± 190	45	small	From tt threshold scan
A SM				QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m con}$	1.2 ± 0.3	0.10	small	From tt threshold scan
	1.0001	0 5 3 5 10		QCD errors dominate
ttZ couplings	$\pm 30\%$	0.5 - 1.5 %	small	From $\sqrt{s} = 365 \text{GeV}$ run

Ζ

W

top

arXiv:2106.13885

FCCee: direct BSM searches

FCCee: not just a precision machine!

- Huge statistics opens the window for search of forbidden (or extremely rare) decays
- Lepton flavour violation
 - Examples: $Z \rightarrow \tau \mu$ in 5T Z decays, or $\tau \rightarrow \mu \nu / e \nu$ in 200B τ decays
 - Also: $B^0 \to K^{*0}\tau^+\tau^-$ (see excitement in recent LHCb anomalies)
 - Unique flavour physics potential at FCCee with huge Z statistics
- Dark Matter searches: invisible decays of Z and Higgs
- Light, weakly-interacting particles provide elegant solutions to DM puzzle

Detectors & TDAQ

Detectors & Instrumentation

- Primary goal of the detector R&D branch is to demonstrate, as input to the next ESPPU, that detectors can be built that match the precision physics potential of the FCC
- European Strategy stresses importance of strong focus on instrumentation
- Common R&D issues with near- and mid-term projects: goal is to exploit synergies and work on common deliverables
- Extremely important to offer long-term prospect for engineers & detector physicists
- Ongoing effort to establish R&D collaborations

FCCee Detectors

CLD

- Well established design
 - ILC -> CLIC detector -> CLD
- Engineering needed to make able to operate with continous beam (no pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations?
 - σ_p/p, σ_E/E
 - PID (O(10 ps) timing and/or RICH)?
 - ...
- Robust software stack
 - Now ported (wrapped) to FCCSW

- Less established design
 - But still ~15y history: 4th Concept
- Developed by very active community
 - Prototype construction / test beam compains
 - Italy, Korea,...
- Is IDEA really two concepts? Or will it be?
 - w, w/o crystals
- Software under active development
 - Being ported to FCCSW

Noble Liquid ECAL based

- A design in its infancy
- High granul Noble Liquid ECAL is the core
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

Full simulation of ECAL available in FCCSW

Mogens Dam

Online Computing Challenges Detector & readout requirements for future e^+e^- colliders

	On-line computing challenges: detector & readout requirements
	Richard Brenner ¹ and Christos Leonidopoulos ²
21	 ¹ Uppsala University ² University of Edinburgh
20	Received: date / Revised version: date
ysics.ins-det] 7 Nov	Abstract. The operation at the Z-pole of the FCC-ee machine will deliver the highest possible instantaneous luminosities with the goal of collecting the largest Z boson datasets (Tera-Z), and enable a programme of Standard Model physics studies with unprecedented precision. The data acquisition and trigger systems of the FCC-ee experiments must be designed to be as unbiased and robust as possible, with the goal of containing the systematic uncertainties associated with these datasets at the smallest possible level, in order to not compromise the extremely small statistical uncertainties. In designing these experiments, we are confronted by questions on detector readout speeds with an extremely tight material and power budget, trigger systems with a first hardware level or implemented exclusively on software, impact of background sources on event sizes, ultimate precision luminosity monitoring (to the $10^{-5} - 10^{-4}$ level), and sensitivity to a broad range of non-conventional exotic signatures, such as long-lived non-relativisite particles. We will review the various challenges on online selection for the most demanding Tera-Z running scenario and the constraints they pose on the design of FCC-ee detectors.
[ph	1 Introduction
.04168v1	The FCC-ee machine is expected to deliver the highest instantaneous luminosities ever achieved, forcing a re-evaluation of the requirements for trigger and data acquisition (DAQ) systems. The conventional wisdom is that the trigger systems of FCC-ee experiments must rely on simple (low- or minimum- bias ¹) triggers with built-in redundancy, e.g. calorimeter-based, muon-based or tracker-based. For example, in the LEP era [1], the online selection was established from calorimeter- and tracker-based triggers. For the ILC studies [2], the assumption has been that the experiments will rely on a 'triggerless' DAQ (i.e. no first-level hardware trigger), evaluation to relative analogibies are studies to a 'triggerless' DAQ (i.e. no first-level hardware trigger), evaluation the relative small collision rates It is worth mentioning that LHCb [3] one of the current experiments is

bias¹) triggers with built-in redundancy, e.g. calorimeter-based, muon-based or tracker-based. For example, in the LEP era [1], the online selection was established from calorimeter- and tracker-based triggers. For the ILC studies [2], the assumption has been that the experiments will rely on a 'triggerless' DAQ (i.e. no first-level hardware trigger), exploiting the relatively small collision rates. It is worth mentioning that LHCb [3], one of the current experiments, is going to collect all detector data from collisions and feed it into an event selector that will rune metricely in software. The experimental environment at FCC-ee eis, however, very different from that at LHCb. The event rate is significantly lower than at a hadron collider, but the material budget is much tighter which limits the services and readout bandwidth. Compared with previous experiments at lepton colliders, the challenge for FCC-ee experiments is the very large data rates (~ 200 kHz when running at the Z-pole), which are orders of magnitude larger than at LEP and are significantly higher than at Belle II.

L In this essay, we review studies of hardware and software solutions that will allow FCC-ee experiments to record all of the interesting physics events with very high efficiency and redundancy, leading to minimum uncertainties and biases in the experimental measurements. A few thoughts based on invited FCC essay on online computing challenges for future e^+e^- colliders accepted by EPJ+ (jointly with Richard Brenner)

"Focus Point on A Future Higgs & Electroweak Factory (FCC): Challenges towards Discovery"

Online challenges: what do others do?

Conventional wisdom: rely on simple triggers with built-in redundancy

- LEP: when life was simple. Calo-, muon- or tracker-based selection
- ILC: "trigger-less" DAQ (aka: no custom hardware for Level-1 filtering)
- LHCb: collecting all detector data from all collisions, and feed into event selection (run entirely on software)
 - But: material budget at future e⁺e⁻ colliders limits readout bandwidth & services

Instantaneous luminosities: FCCee

FCC-ee: The Lepton Collider

285

Fig. 2. Baseline luminosities expected to be delivered (summed over all interaction points) as a function of the centre-of-mass energy \sqrt{s} , at each of the four worldwide e^+e^- collider projects: ILC (blue square), CLIC (green upward triangles), CEPC (black downward triangles), and FCC-ee (red dots), drawn with a 10% safety margin. The FCC-ee performance data are taken from this volume, the latest incarnation of the CEPC parameters is inferred from [20], and the linear collider luminosities are taken from [15,17].

Instantaneous luminosities: FCCee

Fig. 2. Baseline luminosities expected to be delivered (summed over all interaction points) as a function of the centre-of-mass energy \sqrt{s} , at each of the four worldwide e^+e^- collider projects: ILC (blue square), CLIC (green upward triangles), CEPC (black downward triangles), and FCC-ee (red dots), drawn with a 10% safety margin. The FCC-ee performance data are taken from this volume, the latest incarnation of the CEPC parameters is inferred from [20], and the linear collider luminosities are taken from [15,17].

https://link.springer.com/article/10.1140%2Fepjst%2Fe2019-900045-4 FCC: Physics & Politics

Rates & event sizes at colliders

- Three (or four) parameters here
 - Rate of interesting physics to record
 - ➤ Event size
 - Data throughput (ie. Read-out & write-out data volume/time)

Key TDAQ parameter: data throughput, not rate!
 Capacity: data volume per unit time =

 (event size) × (interesting physics rate)

 Determining readout & write-out capacity of system

Rates & event sizes at LHC

Experiment	Rate	Event size	Throughput					
Detector Readout								
ATLAS/CMS Run 1/2	100 kHz	1 MB	100 GB/s					
LHCb Run 1/2	1 MHz	100 kB	100 GB/s					
ATLAS/CMS Run 4 –	O(500 kHz)	4 MB (PU = 200)	2 TB/s					
LHCb Run 4 –	40 MHz	100 kB	4 TB/s					
Throughput to disk								
ATLAS/CMS Run 1/2	1-2 kHz	1 MB	1-2 GB/s					
LHCb Run 1/2	10 kHz	100 kB	1 GB/s					
ATLAS/CMS Run 4 –	5 kHz	4 MB (PU = 200)	20 GB/s					
LHCb Run 4 –	20 kHz – ?	100 kB	2 GB/s					

Notes:

- Figures refer to order-of-magnitude estimates
- Generally, disk space capacity is the actual bottleneck here, not trigger rate or output to disk

Rates & event sizes at FCCee (Z-pole)

Table 1. Event rates expected for various processes at the Z-pole at the FCC-ee [4, 5]. The beam background is expected to be ~10% of the total event rate.

(kHz)	Physics process
100	Z decays
30	$\gamma\gamma \rightarrow \text{hadrons}$
50	Bhabha
20	Beam background
~ 200	Total

Basic assumptions

- Store all interesting physics with ~100% efficiency
- Beam background: not a major consideration for DAQ

https://link.springer.com/article/10.1140%2Fepjst%2Fe2019-900045-4

Rates & event sizes at FCCee (Z-pole)

Table 1. Event rates expected for various processes at the Z-pole at the FCC-ee 4,5. The beam background is expected to be ~10% of the total event rate.

Physics process	Rate (kHz)
Z decays	100
$\gamma\gamma \rightarrow hadrons$	30
Bhabha	50
Beam background	20
Total	~ 200

Table 2. Average event data rates expected for the CLD and IDEA subdetectors at the Z-pole for the FCC-ee [4,5].

Subdetector	Physics	Background/noise				
CLD Vertex Detector	150 MB/s	6 GB/s				
CLD Tracker	160 MB/s	10 GB/s				
IDEA Drift Chamber	60 GB/s	2 GB/s				
IDEA Si Wrapper	32 MB/s	0.5 GB/s				
IDEA DR Calorimeter	10 GB/s	1.6 TB/s*				
IDEA pre-shower	320 MB/s	820 MB/s				
IDEA Muon Detector	4 MB/s	67 MB/s				
Assuming no suppression or isolated counts						

https://link.springer.com/article/10.1140%2Fepjst%2Fe2019-900045-4

Rates & event sizes at FCCee (Z-pole)

 Table 1. Event rates expected for various processes at the Z-pole at the FCC-ee
 4.5
 The beam background is expected to be

- With an appropriate zero-suppression scheme, the major contribution to the average event size for the IDEA detector is from physics, and it should be possible to keep the main backgrounds (e.g. synchrotron radiation) under control at a relatively small fraction of the total event rate
- Zero-suppression requires continuous calibration in semi-real time, smooth/stable running conditions, robust monitoring

Subdetector	Physics	Background/noise
CLD Vertex Detector	150 MB/s	6 GB/s
CLD Tracker	160 MB/s	10 GB/s
IDEA Drift Chamber	60 GB/s	2 GB/s
IDEA Si Wrapper	32 MB/s	0.5 GB/s
IDEA DR Calorimeter	10 GB/s	1 6 TB/s*
IDEA pre-shower	320 MB/s	820 MB/s
IDEA Muon Detector	4 MB/s	67 MB/s
* Assuming no suppress	sion for isolate	ed counts

https://link.springer.com/article/10.1140%2Fepjst%2Fe2019-900045-4

 ~ 10

Luminosity monitoring

Challenges for FCC-ee Luminosity Monitor Design

Mogens Dam

Niels Bohr Institute, Copenhagen University, Denmark

Received: July 28, 2021/ Revised version: July 28, 2021

Abstract. For cross section measurements, an accurate knowledge of the integrated luminosity is required. The FCC-ee Z lineshape programme sets the ambitious precision goal of 10^{-4} on the *absolute* luminosity measurement and one order of magnitude better on the *relative* measurement between energy-scan points. The luminosity is determined from the rate of small-angle Bhabha scattering, $e^+e^- \rightarrow e^+e^-$, where the final state electrons and positrons are detected in dedicated monitors covering small angles from the outgoing beam directions. The constraints on the luminosity monitors are multiple: *i*) they are placed inside the main detector volume only about 1 m from the interaction point; *ii*) they are centred around the outgoing beam lines and do not satisfy the normal axial detector symmetry; *iii*) their coverage is limited by the beam pipe, on the one hand, and the requirement to stay clear of the main detector acceptance, on the other; *iv*) the steep angular dependence of the Bhabha scattering process imposes a geometrical precision on the acceptance limits at about 1 µrad, corresponding to geometrical precisions of $\mathcal{O}(1 \,\mu m)$; and *v*) the very high bunch crossing rate of 50 MHz during the Z-pole operation calls for fast readout electronics. Inspired by second-generation LEP luminosity monitors, a proposed ultra-compact solution is based on a sandwich of tungsten-silicon layers. A vigorous R&D programme is needed in order to ensure that such a solution satisfies the more challenging FCC-ee requirements.

arXiv:2107.12837

Trigger-less design?

- A software-based solution provides flexibility that cannot be matched by traditional first-level hardware-based filtering systems
- For a future e^+e^- collider, the major challenge is the very high luminosity (especially at the Z-pole). R&D studies assume zerosuppression will be routinely applied at read-out. However, this necessitates not only careful calibration (&alignment), but also a technical solution that can be deployed online and updated in semi-real time.
- Smooth & stable running conditions and robust monitoring system are of paramount importance
- Detector choices can have a major impact on TDAQ design. It is important to balance detector requirements against operational considerations & constraints on TDAQ when designing future experiments.

Trigger-less design? #2

- Tracking: Time-Projection Chambers (TPC) which is favoured by tracking experts for lightweight design cannot be read out every 20 ns. A TPC-based detector would require hardwarebased filtering system
- Calorimetry: a fine-granularity but noisy calorimeter may lead to non-straightforward zero-suppression. A high-noise calorimeter that contributes significantly to average event data rates would interfere with optimisation of trigger efficiency of electromagnetic showers.

Long-Lived Particles

- Dark Sector models give rise to long-lived signatures
- Challenge for TDAQ with appearing/ disappearing tracks that do not point to primary vertex
- Selection of LLP events in real-time usually not a priority in design phase of experiments. Complexity of signature makes it harder to find good metrics for design specs

- Timing info of every hit would allow studies of out-ofbunch/out-of-time particles.
- Hardware track triggering requires instrumentation on tracker
- Important to have clear strategy for LLP searches. Require distant detectors? integrate in TDAQ?

Political considerations

Political considerations

- Environment
- Funding
- Beyond Physics

Environment

J P Burnet, Update of the Power Demand for FCC-ee

- · Update of the power demand / main loads for FCC-ee
- · Distribution of the power demand by points and by the beam energies
- · Estimation of energy consumption per machine configurations
- · Optimization of the accelerator systems to reduce the power demand
- W Н TT Ζ · Ways to reduce the energy consumption Beam energy (GeV) 45.6 80 182.5 120 Magnet current 25% 44% 66% 100% 6% Power ratio 19% 43% 100% **Big Five:** PRF EL (MW) 146 146 146 146 Storage RF PRFb EL (MW) Booster 2 2 2 2 Cryo 17 50 Pcryo (MW) Storage 1 7 **Booster Magnets** Pcryo (MW) 0.19 0.56 Booster 0.01 0.08 **Collider Magnets** Pcv (MW) all 33 34 36 40.2 **Cooling & Ventilation** PEL magnets (MW) Stroage 6 17 39 89 PEL magnets (MW) 3 5 Booster 1 11 Plus others: general services, Experiments (MW) 8 8 Pt A & G 8 8 computing, ... Data centers (MW) Pt A & G 4 4 4 4 General services (MW) 36 36 36 36 Power during beam operation (MW) 237 257 293 387 174 Average power / year (MW) 143 154 225
- Is FCCee (240): 174 MW more energy-hungry than ILC(240): 140 MW/yr or CLIC(380): 110 MW/yr ?
- Not so quick! ILC/CLIC produce 2-4 times fewer Higgs, with 3-6x longer running times

Updated power demand for FCC-ee per working point

Environment: energy consumption

Higgs factory \sqrt{s} (GeV)	CLIC 380	$\begin{array}{c} \mathrm{ILC} \\ \mathrm{250} \end{array}$	${ m C}^3 { m 250}$	$\begin{array}{c} \text{CEPC} \\ 240 \end{array}$	FCC-ee 240
Instantaneous power P (MW) Annual collision time T (10 ⁷ s) Operational efficiency ϵ (%) Annual energy consumption E (TWh)	$110 \\ 1.20 \\ 75 \\ 0.4$	$140 \\ 1.60 \\ 75 \\ 0.7$	$150 \\ 1.60 \\ 75 \\ 0.8$	$340 \\ 1.30 \\ 60 \\ 1.6$	$290 \\ 1.08 \\ 75 \\ 1.0$
Higgs factory	CLIC	C ILC	C^3	CEPC	FCC-ee
Running time as a Higgs factory (year) Total number of Higgs bosons produced (10 ⁶	8) 0.25	$\begin{array}{c} 11.5 \\ 0.5 \end{array}$	$\begin{array}{c} 11.5\\ 0.5\end{array}$	$10 \\ 4$	3 1
Energy consumption per Higgs boson (MWh	.) 14	17	18	4.1	3.0

arXiv:2208.10466

Environment: energy consumption

Higgs factory	CLIC	ILC	C^3	CEPC	FCC-ee
\sqrt{s} (GeV)	380	250	250	240	240

FCC: Physics & Politics

Environment: carbon footprint

Higgs factory Operated from	CLIC CERN	ILC KEK	C^3 FNAL	CEPC China	FCC-ee CERN
Carbon intensity (kg CO ₂ eq. / MWh)	56	565	381	546	56
Carbon footprint per Higgs boson $(t CO_2 eq.)$	0.8	9.4	6.8	2.2	0.17

arXiv:2208.10466

Environment: carbon footprint

Funding

- Funding for FCC FS secured in CERN's Medium-Term Plan: 100 MCHF (~ 20 MCHF/year over 5 years)
 - 1st stage: tunnel & FCCee
- Additional funding for magnet R&D: 120 MCHF/6 years
 - Sustained R&D on High-Field Magnets, for a seamless start of the 2nd stage (FCC-hh)

FCC 1st stage cost profile

Construction cost estimate for FCC-ee

- Machine configurations for Z, W, H working points included
- Baseline configuration with 2 detectors
- CERN contribution to 2 experiments incl.

cost category	[MCHF]	%
civil engineering	5.400	50
technical infrastructure	2.000	18
accelerator	3.300	30
detector	200	2
	10.000	100
total cost (2018 prices)	10.900	100

CERN

FCC Feasibility Study Overview Michael Benedikt Paris, 30 May 2022

Spending profile for FCC-ee

- CE construction 2032 2040
- Technical infrastructure 2037 2043
- Accelerator and experiment 2032 2045

• Commissioning and operation start 2045 - 2048.

Financial feasibility: spending profile for the tunnel and FCC-ee machine developed and needed resources versus time defined Ongoing discussions with Host States and Council

Substantial resources (~ 5 BCHF) needed from outside CERN's budget

- Large part in-kind contributions from non-Member States
- Special contributions from Host States and other Member States
- European Commission
- Private funding?

FCC: beyond Physics

- CERN has been the leader in scientific & technological vision for the last 70 years
- Excellence is extremely hard to achieve. But very easy to loose
- European tradition of global collaboration & open science values

A lesson from the past: SSC

- A 87-km ring, 20-TeV collider that was not meant to be
 Cancelled in 1993 after \$2.5B and 20% of excavation completed due to increased costs
- US has contributed significantly larger amounts to LHC that would have cost to complete SSC construction

Why Europe

FCC-ee: Your Questions Answered

Contribution to the European Particle Physics Strategy Update 2018-2020

(See next page for the list of authors)

24 Why do we want FCC in Europe?

This document has been prepared by

A. BLONDEL^{1,2}, P. JANOT² (EDITORS)

N. ALIPOUR TEHRANI², P. AZZI³, P. AZZURRI⁴, N. BACCHETTA³,

arXiv:1906.02693

M. Benedikt², F. Blekman⁵, M. Boscolo⁶, M. Dam⁷, S. De Curtis⁸,

D. D'ENTERRIA², J. ELLIS⁹, G. GANIS², J. GLUZA^{10,11}, C. HELSENS²,

S. JADACH¹², M. KORATZINOS¹³, M. KLUTE¹³, C. LEONIDOPOULOS¹⁴,

E. LOCCI¹⁵, M. MANGANO², S. MONTEIL¹⁶, K. OIDE², V. A. OKOROKOV¹⁷,

E. PEREZ², T. RIEMANN^{10,18}, R. TENCHINI⁴, M. SELVAGGI², G. VOUTSINAS², J. WENNINGER², F. ZIMMERMANN².

This document a with other colliders addressing many qu Strategy symposiun now and the final er recommendations. ' information become

update". Alternative facilities that are proposed as providing a similar programme of Higgs studies, are less precise; not much cheaper; and considerably less broad in physics perspectives. As seen in Section 23, the other routes to reach 100 TeV pp collisions are less precise, less complete, and more expensive.
Over the past 65 years, step by step and exploiting synergies between successive accelerators, Europe has developed a laboratory. CEBN, that is now leading the field. With its demonstrated

The integrated FCC is the most visionary proposal that fulfils the recommendation of the European

Strategy in 2013: "To stay at the forefront of particle physics, Europe needs to be in a position

to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy

Europe has developed a laboratory, CERN, that is now leading the field. With its demonstrated extraordinary competence, its international membership, its built-in cooperation among countries sharing common ideals of freedom and democracy, and the existing infrastructures (accelerator and injector complex, cryogenics, mechanics, electronics, workshops, and its many competences), CERN is the best place for a challenging enterprise such as FCC.

The FCC CDR makes a compelling list of the benefits for all CERN member states, and more generally for all participating countries, of hosting the FCC project at CERN. Such benefits encompass technological and industrial applications in fields that range from information technology to fast electronics, particle accelerator and detector technologies and know-how, which in turn are put into practice in communications, medicine, health, and many other sciences or day-to-day use. The combined LEP/LHC/HL-LHC cost-benefit analysis [121, 122, 123, 124] revealed that a long-term programme consisting of a technology-ready lepton collider (FCC-ee), followed by a highest energy hadron collider (FCC-hh) is most likely to generate the highest possible socio-economic impact. It is therefore, not only for the physics, but also from a socio-economic point of view, an unbeatable scenario [4].

A few words on China

Collider efforts in China

CEPC:

- Circular electron positron collider
- 50 100 km ring
- 90 250 GeV
- Z and Higgs factory

SPPC:

- Super pp Collider
- In the same ring as CEPC

Parameters	CEPC Design – Z-pole Parameters			
	Parameter	Design Goal		
Design Goal	Particles	e+, e-		
e+, e-	Center of mass energy	2*45.5 GeV		
2*120 GeV	Integrated luminosity (peak)	>10^34/cm^2s		
>2*10^34/cm^2s	No. of IPs	2		
2	Polarization	to be considered in the second round of design		
	Design Goal e+, e- 2*120 GeV >2*10^34/cm^2s 2	Parameters CEPC Design - 2 Parameter Parameter		

A few words on China

Timeline (dream)

• CPEC

- Pre-study, R&D and preparation work
 - Pre-study: 2013-15
 - Pre-CDR by the end of 2014 for R&D funding request
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
- Construction: 2021-2027
- Data taking: 2028-2035
- SppC
 - Pre-study, R&D and preparation work
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Engineering Design: 2030-2035
 - Construction: 2035-2042
 - Data taking: 2042 -

A few words on China

Major advantages

- Low cost
- Ambition

My personal opinion

 If Europe (&US) does not step up, have no doubts that China will get there

Epilogue

Summary

- After a very successful decades-long physics program that established the SM we are exhausting the theoretical clues and we must pursue experimental exploration
- The integrated FCC project with lepton & hadron colliders offers an immensely rich physics program extending till the end of the 21st century
- Program very ambitious, rewarding (huge statistics) but challenging: technology R&D and control of systematics will be key to success
- FCC is the best, most comprehensive & most environmentally friendly option among collider proposals
- Europe: the place of open science & global collaboration

Bonus Slides

FCC: International Collaboration

members, MoU renewal of remaining CDR participants in progress

Feasibility Study (2021-25) objectives

- demonstration of the geological, technical, environmental and administrative feasibility of the tunnel and surface areas and optimisation of placement and layout of the ring and related infrastructure;
- pursuit, together with the Host States, of the preparatory administrative processes required for a potential project approval to identify and remove any showstopper;
- optimisation of the design of the colliders and their injector chains, supported by R&D to develop the needed key technologies;
- elaboration of a sustainable operational model for the colliders and experiments in terms of human and financial resource needs, as well as environmental aspects and energy efficiency;
- development of a consolidated cost estimate, as well as the funding and organisational models needed to enable the project's technical design completion, implementation and operation;
- identification of substantial resources from outside CERN's budget for the implementation of the first stage of a possible future project (tunnel and FCC-ee);
- consolidation of the physics case and detector concepts for both colliders.

Sequence of energy runs

Baseline scenario with 2IPs (from CDR)

Numbers of events in 15 years, tuned to maximise the physics outcome						
ZH maximum	√s ~ 240 GeV	3 years	10 ⁶	e ⁺ e ⁻ → ZH	Never done	2 MeV
tt threshold	√s ~ 350 GeV	5 years	10 ⁶	e ⁺ e ⁻ → tt	Never done	5 MeV
Z peak	√s ~ 91 GeV	4 years	5 X 10 ¹²	$e^+e^- \rightarrow Z$	LEP x 10 ⁵	< 50 keV
WW threshold+	√s ≥ 161 GeV	2 years	> 10 ⁸	$e^+e^- \rightarrow W^+W^-$	LEP x 10 ³	< 200 keV
[s-channel H	√s = 125 GeV	? Years	~5000	e⁺e⁻ → H]	Never done	

- Exact durations depend on a number of factors (to be studied by the FCCC in 2048-2063+)
 - Overall duration: Are the FCC-hh magnets ready ? New physics in FCC-ee data ?
 - Step duration: What is the actual luminosity at each \sqrt{s} ? How many IPs? What physics case?
- Exact sequence of events is mostly a political decision (to be taken later)
 - RF installation defines the easiest technical and funding profiles (lowest $\sqrt{s} \rightarrow$ highest \sqrt{s})
 - But the overall physics outcome is independent of the exact sequence
 - → Higgs and top final precisions need Z and W measurements; Global EW fit requires precise top mass.
 - Only two serious constraints
 - → Top must come last (RF system significant modification, which cannot be easily undone);
 - → s-channel H must come after ZH (m_H) and Z (RDP and monochromatisation must be run routinely)

The case for four interaction points

- One of the many advantages of circular colliders: can serve several IP
 - Overall gain in luminosity and in luminosity/MW (greener collider)
 - Many measurements are statistics limited some are tantalizingly close with only 2 IP
 - → E.g., Higgs self-coupling ; Search for HNL; Flavour anomalies; etc.
 - Variety of detector requirements may not be satisfied by one or even two detectors
 - E.g., High precision, high granularity, high stability, geometric accuracy, PID, cost constraints
 - → Having four IP allows for a range of detector solutions to cover all FCC-ee opportunities
 - Four IP provide an attractive challenge for all skills in the field of particle physics
 - Redundancy is invaluable in uncovering hidden systematic biases or conspiracy of errors
 - E.g., m_z discrepancy at LEP in 1991
 - → Found to be an effect of RF phases and voltages
 - Could have remained unnoticed for ever
 - → With only ALEPH and DELPHI
 - → Or with only L₃ and OPAL

Physics Letters B 307 (1993) 187-193	ΔE_{CM} [MeV]				
	L3	ALEPH	OPAL	DELPHI	
RF corr. from 1992 voltages	19.5 ± 1.2	0.25 ± 1.1	$19.4{\pm}1.2$	-0.25 ± 1.1	

Systematics

Precision EW measurements (cont'd)

• We often hear that more Z pole statistics is useless, because they are systematics-limited

- This is a passive attitude, which leads to pessimistic expectations and wrong conclusions/planning
 - Experience shows that a careful experimental systematic analysis boils down to a statistical problem
 - If well prepared, theory will go as far as deemed useful : this preparation starts today (and needs SUPPORT)
 - We are working in the spirit of matching systematic errors to expected statistical uncertainties
- Take the Z lineshape

Z (and W) mass:

Error dominated by \sqrt{s} determination with resonant depolarization. As more understanding is gained, progress are made at a constant pace, and this error approaches regularly (already passed it, for the W mass) the statistical limit

arXiv:1909.12245		statistics	$\Delta \sqrt{s}_{\rm abs}$	$\Delta \sqrt{s}_{\rm syst-ptp}$	calib. stats.	$\sigma_{\sqrt{s}}$
blarization. constant it, for the	Observable		$100 \mathrm{keV}$	$40\mathrm{keV}$	$200 \text{ keV}/\sqrt{N^i}$	$85 \pm 0.05 \mathrm{MeV}$
	m _Z (keV)	4	100	28	1	· _ ·
	$\Gamma_{\rm Z} \ (\rm keV)$	4	2.5	22	1	10
	$\sin^2 \theta_{\rm W}^{\rm eff} \times 10^6 \text{ from } A_{\rm FB}^{\mu\mu}$	2	-	2.4	0.1	-
	$\frac{\Delta \alpha_{\rm QED}(m_Z^2)}{\alpha_{\rm QED}(m_Z^2)} \times 10^5$	3	0.1	0.9	-	0.1

$sin^2\theta_W^{eff}$ and Γ_Z (also m_W vs m_Z) :

Error dominated by point-to-point energy uncertainties.

Based on in-situ comparisons between \sqrt{s} (e.g. with muon pairs), with measurements made every few minutes (100's times per day) Boils down to

- statistics (the more data the better, scales down as $1/\sqrt{L}$)
- detector systematics (uncorrelated between experiments, scales down a 1/ $\sqrt{N_{experiments}}$)

$\alpha_{\text{QED}}(m_{Z})$:

Traditionally obtained from calculations using σ (e+e- \rightarrow hadrons) at various smaller \sqrt{s} : systematic error subject to debate. Obtained at FCC-ee from off-peak asymmetries (87.9 & 94.3 GeV): for the first time, it is a direct measurement of this quantity (game changer)

- Enters as a limiting parametric uncertainties in the new physics interpretation of many past and future measurements.
- Is statistics limited and will directly benefit from more luminosity
- No useful impact on $\alpha_{QED}(m_z)$ with five times less luminosity

FCC-ee

specia
Polarimeters

2 Polarimeters, for e+ and e- Use of both electron and photons recoil \rightarrow measurement of 3D beam polarization Backscattered Compton $\gamma + e \rightarrow \gamma + e$ 532 nm (2.33 eV) laser; detection of photon and electron. Change upon flip of laser circular polarization \rightarrow beam Polarization ± 0.01 per second End point of recoil electron \rightarrow beam energy monitoring ± 4 MeV per second (Muchnoi, Aurelien Martens)

Polarimeters

Transverse beam polarization provides beam energy calibration by resonant depolarization

- \rightarrow low level of polarization is required (~10% is sufficient)
- \rightarrow at Z & W pair threshold comes naturally $\sigma_E \propto E^2/\sqrt{\rho}$
- → at Z use of asymmetric wigglers at beginning of fills since polarization time is otherwise very long (250h → ~1h)
- \rightarrow should be used also at ee \rightarrow H(126)
- → use 'single' non-colliding bunches and calibrate continuously during physics fills to avoid issues encountered at LEP
- ightarrow Compton polarimeters for e+ and e- each
- ightarrow should calibrate at energies corresponding to half-integer spin tune
- \rightarrow must be complemented by analysis of «average E_beam-to-E_CM» relationship

For beam energies higher than ~90 GeV can use ee \rightarrow Z γ or ee \rightarrow WW events to calibrate E_{CM} at ±1-5 MeV level: m_H (~3 MeV) and m_{top} (~10-20 MeV) measts

Energy beam calibration

Centre-of-mass energy ppm calibration

- A cornerstone of the FCC-ee physics programme at the Z pole and the WW threshold
 - Motivation: measurement of $m_{Z_{I}}$ Γ_{Z} (stat. 4 keV), A_{FB} (stat. ~ 10⁻⁵) and m_{W} (stat. 300 keV)
 - **Opportunities:**
 - ppm <<u>E_{beam}</u>> measurement with resonant depolarisation: 100 keV (LEP, Z) or 6 keV (VEPP4, J/ ψ)
 - → Unique to circular colliders use a small fraction of non-colliding e⁺ and e⁻ bunches
 - Per-mil beam energy spread measurement (for Γ_{Z} , A_{FB}) from huge dimuon statistics at the Z pole

 E_e -

A few serious challenges to be solved to match achievable statistics

 E_{e^+}

- Get beams polarized enough (\rightarrow wigglers)
- Ground motion (tides)
- IP dispersion and IP offsets
- Relate $\langle E_{\text{beam}} \rangle$ to $\sqrt{s_{IP}}$
 - → Single RF system essential
- **Ring imperfections**
- Point-to-point errors (for $\Gamma_{z_{I}} A_{FB}$)
- How well can we check that $P_{IP} = 0$?
- How do we operate it all?

Janot

ECFA Plenary Meeting 19 Nov 2021

14

arXiv:1909.12245

Flavour, Tau, QCD, Rare/BSM

<u>TeraZ</u> offers four additional pillars to the FCC-ee physics programme

Flavour physics programme

Enormous statistics 1012 bb, cc Clean environment, favourable kinematics (boost) Small beam pipe radius (vertexing) $\alpha_{\rm s}({\rm m_7})$ with per-mil accuracy 1. Flavour EWPOs (R_b, A_{FB}^{b,c}) : large improvements wrt LEP 2. 1. Often statistics-limited CKM matrix, CP violation in neutral B mesons 3. 2. Flavour anomalies in, e.g., $b \rightarrow s\tau\tau$ 5. 10¹² Z is a minimum ٦. Tau physics programme Enormous statistics: 1.7 10¹¹ ττ events ٠ Clean environment, boost, vertexing ٠ Signature: long lifetimes (LLP's) Much improved measurement of mass, lifetime, BR's ٠ Other ultra-rare Z (and W) decays τ -based EWPOs (R_{τ} , A_{FB}^{Pol} , P_{τ}) 1.

- Lepton universality violation tests 2.
- PMNS matrix unitarity 3.
- Light-heavy neutrino mixing 4.

P. Janot

ECFA Plenary Meeting 19 Nov 2021

QCD programme

- Enormous statistics with $Z \rightarrow \ell \ell$, gg(g)
- Complemented by 100,000 H \rightarrow gg
- Quark and gluon fragmentation studies
- Clean non-perturbative QCD studies

Rare/BSM processes, e.g. Feebly Coupled Particles Intensity frontier offers the opportunity to directly observe new feebly interacting particles below m₇

- Axion-like particles 1.
- Dark photons 2.
- Heavy Neutral Leptons 3.

Accelerator options

	√s	L /IP (cm ⁻² s ⁻¹)	Int. L /IP(ab ⁻¹)	Comments
e ⁺ e⁻ FCC-ee	~90 GeV Z 160 WW 240 H ~365 top	230 x10 ³⁴ 28 8.5 1.5	75 5 2.5 0.8	2-4 experiments Total ~ 15 years of operation
рр FCC-hh	100 TeV	5 x 10 ³⁴ 30	20-30	2+2 experiments Total ~ 25 years of operation
PbPb FCC-hh	√s _{NN} = 39TeV	3 x 10 ²⁹	100 nb ⁻¹ /run	1 run = 1 month operation
<mark>ep</mark> Fcc-eh	3.5 TeV	1.5 10 ³⁴	2 ab ⁻¹	60 GeV e- from ERL Concurrent operation with pp for ~ 20 years
e-Pb Fcc-eh	$\sqrt{s_{eN}}$ = 2.2 TeV	0.5 10 ³⁴	1 fb ⁻¹	60 GeV e- from ERL Concurrent operation with PbPb

CIRCULAR Stage 1	neters	K. Oide, D. Shatilov,		
Parameter [4 IPs, 91.2 km,T _{rev} =0.3 ms]	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1280	135	26.7	5.0
number bunches/beam	10000	880	248	36
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.64
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.08/0	4.0/7.25
long. damping time [turns]	1170	216	64.5	18.5
horizontal beta* [m]	0.1	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98
horizontal rms IP spot size [μm]	8	21	14	39
vertical rms IP spot size [nm]	34	66	36	69
beam-beam parameter ξ _x / ξ _y	0.004/ .159	0.011/0.111	0.0187/0.129	0.096/0.138
rms bunch length with SR / BS [mm]	4.38 / 14.5	3.55 / <mark>8.01</mark>	3.34 / 6.0	2.02 / 2.95
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.3	1.33
total integrated luminosity / year [ab ⁻¹ /yr]	87	9.3	3.5	0.65
beam lifetime rad Bhabha + BS [min]	19	18	6	9

FCC: Physics & Politics

Stage 2: FCC-hh (pp) collider parameters

parameter	FCC-hh		HL-LHC	LHC
collision energy cms [TeV]	100		14	14
dipole field [T]	~17 (~16 comb.function)		8.33	8.33
circumference [km]	91.2		26.7	26.7
beam current [A]	0.5		1.1	0.58
bunch intensity [10 ¹¹]	1	1	2.2	1.15
bunch spacing [ns]	25	25	25	25
synchr. rad. power / ring [kW]	2700		7.3	3.6
SR power / length [W/m/ap.]	32.1		0.33	0.17
long. emit. damping time [h]	0.45		12.9	12.9
beta* [m]	1.1	0.3	0.15 (min.)	0.55
normalized emittance [µm]	2.2		2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5	30	5 (lev.)	1
events/bunch crossing	170	1000	132	27
stored energy/beam [GJ]	7.8		0.7	0.36

FUTURE CIRCULAR COLLIDER

FCC-hh: highest collision energies

from LHC technology 8.3 T NbTi dipole

FUTURE CIRCULAR

COLLIDER

via HL-LHC technology 12 T Nb₃Sn quadrupole

- order of magnitude performance increase in both energy & luminosity
- 100 TeV cm collision energy (vs 14 TeV for LHC)
- 20 ab-1 per experiment collected over 25 years of operation (vs 3 ab⁻¹ for LHC)
- similar performance increase as from Tevatron to LHC

FNAL dipole demonstrator 4-layer cos ℜ 14.5 T Nb₃Sn in 2019

CIRCULAR High-field magnets R&D: 1st steps towards FCC-hh

In parallel to FCC Study, HFM development program as long-term separate R&D project

Main R&D activities:

- □ materials: goal is ~16 T for Nb₃Sn, at least ~20 T for HTS inserts
- magnet technology: engineering, mechanical robustness, insulating materials, field quality
- production of models and prototypes: to demonstrate material, design and engineering choices, industrialisation and costs
- □ infrastructure and test stations: for tests up to ~ 20 T and 20-50 kA

Global collaborations already established during FCC CDR phase.

Synchrotron radiation (as in the CDR)

• Of course, the 100 MW from synchrotron radiation mostly go in the arcs

SR photons from the last bend followed through the interaction region and the CLD tracker

- Full GEANT4 simulation predicts no hits in the detector from SR all the way to $\sqrt{s} = 125$ GeV
 - At $\sqrt{s} = 365$ GeV, hits in the central tracker suppressed by additional shielding. VTX 1st layer occupancy ~ 10⁻⁴
 - → Being revisited as we speak (including the need for shielding) with the old and new IR designs
 - ➔ Effect of synchrotron radiation in the IDEA drift chamber will follow

FCC: Physics & Politics

SuperKEKB as a FCC-ee demonstrator

Tested successfully FCC-ee-type "virtual crab waist collisions

K. Oide, Phys. Rev. Accel. Beams 19, 111005)

• Run routinely with smallest β_y^* ever considered for FCC-ee: 1mm and 0.8mm

- World-record luminosity of 4.71×10³⁴ cm⁻²s⁻¹, and counting.
- e⁺ production rate similar to FCC-ee: feasibility shown
 - Top-up injection with short beam lifetime (< 10 mins) demonstrated

The FCC-ee interaction region

- Need to progress from "conceptual" to "feasible" design
 - Engineering mechanical design & assembly concept
 - Including support and access for detector elements
 - Heat load assessment
 - Alignment tolerances and vibration control
 - Conceptual design of IR elements / systems
 - Dealing with backgrounds, beam loss, radiation
- Recent reduction of beam-pipe radius to 10 mm
 - Lower impedance
 - Low backgrounds generate low occupancy
 - Detection layer possibly situated inside the beam pipe?
 - Higher efficiency b/c tagging against light quarks & gluons
- **B** = 2T well adapted to FCC-ee momentum range
 - Study to increase it to 3T at high energies ongoing

