

BASE: Tests of fundamental symmetries by high precision comparisons of the fundamental properties of protons and antiprotons

Barbara Latacz, Stefan Ulmer, BASE Collaboration

CERN / RIKEN 12 / 12 / 2022

ANNES GUTENBERG UNIVERSITÄT MAII

JGU

hhu

Heinrich Heine

Universität Düsseldorf

BSE What happened with antimatter?

Standard Model of Particle Physics

Naive Expectations		Observations	
Baryon/Photon Ratio	10 ⁻¹⁸	Baryon/Photon Ratio	0.6 x 10 ⁻⁹
Baryon/Antibaryon Ratio	1	Baryon/Antibaryon Ratio	10 000

A. Sakharov presented possible solutions in 1967 . According to his work, the matter-antimatter asymmetry could be explained by simultaneously occurring three conditions:

- violation of baryon number;
- C and CP symmetry violation;
- lack of thermal equilibrium in the expanding Universe (=> direct CPT violation).

Ultra Precise Comparisons of fundamental properties of matter/antimatter conjugate system

BSE BASE Collaboration

- **CERN-AD:** Measurement of (RIKEN):
 - \rightarrow proton/antiproton q/m ratio
 - \rightarrow magnetic moment of the antiproton
 - → cold dark matter searches
- Core members: Stefan Ulmer, Barbara Latacz,

Elise Wursten, Bela Arndt, Benny Bayer, Stefan Erlewein, Markus Fleck, Julia Jaeger, Gilbertas Umbrazunas, Maylin Schiffelholz

- Mainz: Measurement of the magnetic moment of the proton, implementation of new technologies (RIKEN/MPG)
- Core members: Christian Smorra, Peter Micke, Fatma Abbass, Matthew Bohman, Markus Wiesinger, Daniel Popper, Christian Will
- Hannover/PTB: QLEDS-laser cooling project, new technologies. (RIKEN/PTB/UH)
- o Group leader: Christian Ospelkaus
- K. Blaum, Y. Matsuda, W. Quint, A. Sótér, J. Walz, Y. Yamazaki

Institutes: RIKEN, MPIK, CERN, University of Mainz, Tokyo University, GSI Darmstadt, University of Hannover, PTB Braunschweig, ETH Zurich

BSE Baryon/Antibaryon Symmetry Experiment

- CERN Antiproton Decelerator Facility is the only operating source of low energy antiprotons.
- Since 2021: ELENA 100 keV antiproton beam with $5 \times 10^7 \ \bar{p}$ in one pulse.

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials

SE CPT with particle/antiparticle comparisons

-> Absolute energy resolution normalized to m-scale.

Reservoir Trap: Stores a cloud of antiprotons, suspends single antiprotons for measurements. **Precision Trap: Homogeneous field for frequency measurements**, $B_2 < 0.5 \mu T / mm^2$. **Analysis Trap:** Inhomogeneous field for the detection of antiproton spin flips, $B_2 = 300 \text{ mT} / \text{mm}^2$. **Cooling Trap:** Fast cooling of the cyclotron motion.

BSE The experiment

BSEA special place (in the Universe?) – BASE Reservoir trap

- BASE Reservoir trap:
 - Pressure: $p_H < 0.46 \times 10^{-18}$ mbar and $p_{He} < 1.04 \times 10^{-18}$ mbar.
 - best characterized vacuum on Earth, comparable to pressures in the interstellar medium
 - Antiproton storage time is 10s of years -> 405 days.
 - Not more than 3000 atoms in a vacuum volume of 0.5 l
 - Order 100 to 1000 trapped antiprotons
 - A local inversion of the baryon asymmetry

BASE ANTIMATTER INVERSION	
local volume	0.0001 ³ m ³
Baryons in local trap volume	1.65*10 ⁻⁷
Antibaryon in local trap volume	100
Antibaryon/Baryon Ratio	5.9*10 ⁸

BSE 1760 nm thick vacuum window

BASE must have:

1. Trap system has to be permamentry closed in order to reach XHV with $p_H < 1.0 \times 10^{-17}$ mbar and $p_{He} < 1.0 \times 10^{-17}$ mbar.

2. We have to be able to transport to the trap center antiprotons and be able to catch them.

BSE Frequency Measurements

• Measurement of fA image currents induced in trap electrodes

- In thermal equilibrium:
 - Particles short noise in parallel
 - Appear as a dip in detector spectrum
 - Width of the dip -> number of particles

$$\Delta v = \frac{1}{2\pi} \frac{R}{m} \left(\frac{q}{D}\right)^2 \cdot N$$

• "Simple" measurement, with main systematics coming from magnetic field stability

$$\nu_{c} = \sqrt{\nu_{+}^{2} + \nu_{z}^{2} + \nu_{-}^{2}}$$

- Sideband method (5.5 ppb in 2016 scatter):
 - -> axial dip spectrum: v_z
 - -> sideband radio-frequency drive at $v_{rf} pprox v_+ v_z$
 - -> double dip spectrum: $v_+ = v_{rf} + v_l + v_r v_z$
 - -> megnetron mode: $v_- \approx v_z^2/(2v_+)$

Main uncertaintity: spectrum shift.

Peak method:

-> direct detection of the modified cyclotron frequency using specially designed cyclotron detector

$$\Delta \nu_{+,z} = \nu_{+,z}^* - \nu_{+,z} = \mathcal{M}_{+,z}(B_2, C_4, SR) \times E_+$$

Main uncertaintity: magnetic field stability.

Axial	680 kHz
Magnetron	8 kHz
Modified Cyclotron	28.9 MHz

BSE Antiproton-to-proton charge to mass ratio measurement

- Inspired by earlier work of TRAP collaboration (G. Gabrielse et al., PRL 82, 3199(1999)).
- Charge to mass ratio:

$$R = \frac{(q/m)_{\bar{p}}}{(q/m)_p} = \frac{\upsilon_{c,\bar{p}}}{\upsilon_{c,p}} = a_{corr} \frac{\upsilon_{c,\bar{p}}}{\upsilon_{c,H^-}}$$

with H^- as a perfect proxy of a proton

$$m_{\mathrm{H}^-} = m_p \left(1 + 2 \frac{m_e}{m_p} - \frac{B_e}{m_p} - \frac{A_e}{m_p} + \alpha_{\mathrm{H}^-} \frac{B^2}{m_p} \right)$$

- B_{e} binding energy of an electron in hydrogen
- ${\cal A}_e$ afinity energy of a second electron

Effect	Magnitude	
m_e/m_p	0.001 089 234 042 95 (5)	MPIK/HHU-D
$-B_e/m_p$	0.000 000 014 493 061	MPQ
$-A_e/m_p$	0.000 000 000 803 81 (2)	Lykke

• Pioneered by BASE shuttling measurement method:

• In BASE one frequency ratio measurement takes 240 s, 50 times faster than in 1999.

Most precise test of CPT invariance in the baryon sector

• 24 000 data points acquired in 4 measurment campaigns over 1.5 years. All in accelerator experimental hall!

Campaign	R _{exp}		σ	$(\mathbf{R})_{stat}$		$\sigma(R)_{sys}$
2018-1-SB	1.00108921874	48	27 *	10 ⁻¹²		$27 * 10^{-12}$
2018-2-SB	1.00108921872	27	47 *	10 ⁻¹²		$49 * 10^{-12}$
2018-3-PK	1.00108921874	48	19 *	10 ⁻¹²		$14 * 10^{-12}$
2018-1-SB	1.00108921878	81	19 *	10 ⁻¹²		$23 * 10^{-12}$
Result			$R_{exp,p,\overline{p}} = -1$	1.00000000000)8(16)	
SME Limits	10 ⁻¹²	10 ⁻⁹		10 ⁻⁶		10 ⁻³
$\begin{split} \delta\omega_{c}^{\overline{p}} - R_{\overline{p},p,exp}\delta\omega_{c}^{p} - 2R_{\overline{p},p,exp}\delta\omega_{c}^{e^{-}} < 1.96 \times \\ \hline Coefficient & Previous Limit & Improved Limit \\ \hline \tilde{c}_{e}^{XX} & < 3.23 \cdot 10^{-14} & < 7.79 \cdot 10^{-15} \end{split}$	t 10 ⁻²⁷ GeV					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
2015 (<i>Nature</i> 524 196 (2015)) 20		2022 (Nature	e 601.7891 (2022	2): 53-5	7)	
$R_{exp,p,\overline{p}}$ = -1.000 000 000 001 (69)		-1.00000000	0008(16)			

Systematic Effects and Result

	Effect	2018-1-SB	2018-2-SB	2018-3-PK	2019-1-SB	
ĺ						Ī
	B ₁ -shift	0.03(2)	0.01(2)	< (0.01)	< (0.01)	
	B ₂ -shift	20.27(14.86)	8.38(14.86)	10.79(12.66)	3.75 (5.16)	
	C ₄ -shift	(1.12)	(1.13)	(1.54)	(0.76)	
	C ₆ -shift	< (0.01)	< (0.01)	< (0.01)	< (0.01)	
	Relativistic	1.20(92)	0.47(90)	1.90(2.32)	0.65(94)	
	Image charge shift	0.05(0)	0.05(0)	0.05(0)	0.05(0)	
	Trap misalignment	0.06(0)	0.06(0)	0.05(0)	0.05(0)	
	. 5					
	Voltage Drifts	- 3.35(5.12)	- 3.77(5.12)	-0.11(11)	- 5.03(5.12)	
	Spectrum Shift	0.37(20.65)	16.89(46.49)	0.74(61)	- 8.61(21.45)	
	FFT-Distortions	(1.57)	(3.48)	(0.03)	(1.23)	
	Resonator-Shape	0.02(3)	0.02(2)	< (0.01)	0.01(2)	
	B ₁ -drift offset	< (0.11)	< (0.11)	< (0.04)	< (0.04)	
	Resonator Tuning	< (0.16)	< (0.16)	< (0.06)	< (0.06)	
	Averaging Time	_	_	- 2.87(25)	_	
	FFT Clock	_	_	(3.69)	_	
	Pulling Shift	_	_	2.86(24)	_	
	Linear Coefficient Shift	_	_	0.16(40)	_	
	Nonlinear Shift	_	_	0.03(2)	-	
ĺ						j
	Systematic Shift	18.65(26.04)	22.11(49.22)	13.60(13.50)	-9.13(22.71)	
	-,					
	R _{exp} – R _{theo}	13.02(27.12)	- 5.04(46.57)	7.99(18.57)	18.34(18.89)	
	and the second					
Ì						Ī
	R _{exp,c} - R _{theo}	- 5.63(37.60)	- 27.15(67.76)	- 5.61(22.66)	27.47(29.54)	
						-

SE Future perspective

1. Cyclotron frequency measurement with phase sensitive methods - **20 p.p.t. / 24h , but only possible during** accelerator shutdown.

- 2. Two particle method:
 - Moderately "simple" for mass measurements
 - Difficult for antiproton nuclear magnetic moment (for antiproton it is 658 times smaller then for electron!!!)

3. Magnetic noise in the accelerator hall:
If you can not switch off the accelerator...
Transport yourself out of the accelerator hall.

SE Weak Equivalence Principle Tests

- Single particle in a Penning trap -> A cyclotron frequency clock.
- Hughes and Holzscheiter (PRL 66, 854 (1991)):

$$\frac{\nu_{c,\bar{\mathbf{p}}} - \nu_{c,\mathbf{p}}}{\nu_{c,\mathrm{avg}}} = \frac{3\Phi}{c^2} \left(\alpha_g - 1\right)$$

where $\frac{\Phi}{c^2} = \frac{GM}{rc^2} = 2.99 \times 10^{-5}$ is a potential of the local supergalactic cluster. Then

 $\alpha_g < 1.8 \times 10^{-7}.$

• Differential analysis: $O(t) = D_p(1 - \varepsilon^2)/[1 + \varepsilon \cos\left(\left(\frac{2\pi}{t_{sid}}\right)t\right)$

Dedicated Antihydrogen Free Fall Experiments (ALPHAg, AEgIS, GBAR): first anticipated precision at up to 1 %.

• Magnetic moment and a spin of a particle are related through a dimentionless parameter called g-factor:

$$\mu = g \frac{q}{2m} S \quad \Rightarrow \quad \mu = \frac{g}{2} \mu_{\mathrm{N}}$$

- (Anti)Proton / electron spin S = ¹/₂
- Larmor frequency spin precession in a given magnetic field:

$$\omega_{L} = g \frac{e}{2m_{p}} B$$

• g factors:

drive frequency (MHz)

Particle	g-factor	Relative standard uncertaintity
Electron	-2.00231930436256(35)	1.7×10^{-13}
Muon – (experiment-world-average-2021)	-2.002 331 84121(82)	4.1×10^{-10}
Proton	5.5856946893(16)	$2.9 imes 10^{-10}$
Antiproton	5.5856946906(60)	$1.5 imes 10^{-9}$

3 SE Goal – 10-fold improved measurement of the pbar moment

BSE Antiproton magnetic moment measurement

• Larmor frequency measurement:

Analysis Trap - high B2 / Cold $\longrightarrow \frac{\nu_L}{\nu_c} = \frac{\mu_p}{\mu_N} = \frac{g_p}{2}$ Precision Trap - low B2 / Hot

> High B2? Low B2? How??? How can we cool antiprotons < 200 mK???

SE 1.5 p.p.b. Antiproton magnetic moment measurement (2017)

Main systematic effects:

• different temperatures of particles proble different magnetic field

Goal: make more homogenous magnetic field and go back to a measurement with one particle (cooling!) Improve this measurement by at least a factor of 10.

Table 1 | Error budget of the antiproton magnetic moment measurement

Effect	Correction (p.p.b.)	Uncertainty (p.p.b.)
Image-charge shift	0.05	0.001
Relativistic shift	0.03	0.003
Magnetic gradient	0.22	0.020
Magnetic bottle	0.12	0.009
Trap potential	-0.01	0.001
Voltage drift	0.04	0.020
Contaminants	0.00	0.280
Drive temperature	0.00	0.970
Spin-state analysis	0.00	0.130
Total systematic shift	0.44	1.020

BSE High B2 - Analysis Trap - frequency stability 2022

• Ferromagnetic ring electrode:

• Optimum frequency stability is at 45mHz, which corresponds to $650 \,\mu\text{K}$ or $60 \,\text{neV}$ energy resolution.

SE Low B2 - More homogenous magnetic field in the Precision Trap

• New trap with increased distance between the Precision (homegenious B) and Analysis trap (spin flip trap)

- **Precision Trap**: Homogeneous field for frequency measurements, $B_2 < 0.5 / m^2$ (10 x improved). **Analysis Trap**: Inhomogeneous field for the detection of antiproton spin flips, $B_2 = 300 \text{ mT} / \text{mm}^2$
- Residual magnetic field in the PT originating from AT magnetic bottle:

	2017	2021 residual
B1 (linear)	0.0712(4) T/m	0.0270(7) T/m
B2 (quadratic)	2.7(3) T/m ²	0.1298(8) T/m ²

Reduces the dominant systematic shift of the 2017 measurement by a factor of 20 !

SE Low B2 - More homogenous magnetic field in the Precision Trap

- Idea:
 - Magnetic shielding -> necessary to decrease fluctuations caused by the Antiproton Decelerator and other experiments.
 - In 2018 it supressed the magnetic field flactuations by up to 225(16).
 - Magnetic shimming
 - a system of superconducting coils to compensate residual B2 and B1:
 - B0 coil to be able to change B2 and B1 without changing v_{+} .

	2017	2021 residual	2022 *tunning
B1 (linear)	0.0712(4) T/m	0.0270(7) T/m	0.016 T/m
B2 (quadratic)	2.7(3) T/m ²	0.1298(8) T/m ²	0 (0.0003) T/m ²

Completely eliminates systematic shift of 2017 measurement!

	-		
• •			
• •			÷ +
1.	-	_	

SE Single antiproton cooling - Cooling Trap

• **Resistive, subthermal cooling** – coupling of a particle to the dedicated cyclotron detector.

It's a stochastic process in which you probe the Boltzman distribution with a temperature corresponding to the temperature of the detector.

• Thermalisation constant:

$$=\frac{m}{R_p}*\left(\frac{D_{eff}}{q}\right)^2$$

 Implementation of a dedicated cooling trap with strong particle detector coupling, reduced detector temperature, high-performance detection resistor.

τ

Optimize transport and readout time in single-particle temperature measurements.

Parameter	2016 measurement (PT)	2022 measurement (CT)
detector temperature	12.8 K	4.2 K
detection Q	450	1250
R _p	75.000 Ω	360.000 Ω
pickup length (D_{eff})	21.5 mm	4.8 mm
thermalization time $ au$	370 s	4.2 s
Transport time	2 x 78 s	2 x 4.6 s
Readout time	64 s	16 s

(s)

cooling time

trap radius (m)

Thermalization Time Optimization

- Use correlation estimates to determine optimum particle / detector coupling time.
 - Measure frequency scatter as a function of particle / detector interaction time

Item	2016	2022		
Spec AVG	64s	16s		
TP from AT	78 s	5 s		
Thermalize	600 s	5 s		
TP To AT	78 s	5 s		
Single Cycle	820 s	31 s		
Improvement Factor: 26				

• Three-fold temperature reduction gives additional factor of three in time reduction for particle preparation at given threshold.

- Explicitly demonstrated: robust 200mK particle preparation in 8 minutes.
- Reduces particle preparation time from 15h to 8 minutes!!!

BSE Single Spin Flips in the Analysis Trap 2022

• Single Spin Flip resolution!!!

• First Larmor frequnecy resonance in the AT this year:

- Working 1760 nm thick vacuum window which allows for catching 100 keV antiproton beam.
- Eliminated systematic error due to magnetic field inhomogenity in Precision Trap.
- Improved cooling time from 15 h to 8 min
- Transport scatter between traps < 20 quanta per transport.
- Reached 45 mHz background frequency scatter.
- Detected single spin flips!

Ready to commission planned <100ppt proton and antiproton magnetic moment measurements...!!!

Recent Achievements for the Future – Sympathetic Cooling

Magnetic moment measurements are limited by particle temperature and would be considerably accelerated by inventing a method beyond resistive cooling.

В

- Method proposed by Wineland and Heinzen: Couple particles in different traps via image currents.
- Transfer particle temperatures from one trap to the other.
- First proof of principle demonstration successful!!! M. Bohman et al., Nature **596**, 514 (2021)
- Demonstrated proton temperature reduction by about a factor of 8.
- New trap geometries under development for more efficient cooling.
- Simulations show that optimised procedures will enable 20 mK temperatures in 10 s.

• New measurement of the antiproton-to-proton charge-mass ratio:

2015 (Nature 524 196 (2015))	2022 (Nature 601.7891 (2022): 53-57)
$R_{exp,p,\overline{p}}$ = -1.000 000 000 001 (69)	-1.0000000008(16)

Factor of 4.3 improvement!!!

- Now: New antiproton magnetic moment measurement with 10 times higher precision.
- Main improvements:
 - New magnetic shielding and shimming system.

	2017	2021 residual	2022 *tunning
B1 (linear)	0.0712(4) T/m	0.0270(7) T/m	0.016 T/m
B2 (quadratic)	2.7(3) T/m ²	0.1298(8) T/m ²	0 (0.0003) T/ m^2

- Dedicated cooling trap with <200 mK particle preparation time of 8 min (factor of 110 faster!!!)
- New vacuum system.
- 45 mHz frequency stability!!!
- Long term improvements:
 - Sympathetic cooling of protons/antiprotons.
 - BASE STEP transporting antiprotons outside the highly unstable antiproton decelerator hall.
- BASE CDM (Cold Dark Matter) a competitive and compact solution for ALP searches.

BSE Thank you for your attention!

Heinrich Heine Universität Düsseldorf

MAX-PLANCK-GESELLSCHAFT

UNIVERSITÄT MAINZ

BSE Main Measurements at BASE

High precision mass spectroscopy

$$\frac{v_{c,\bar{p}}}{v_{c,p}} = \frac{e_{\bar{p}}/m_{\bar{p}}}{e_p/m_p}$$

Cyclotron Motion

 A 16-parts-per-trillion measurement of the antiproton-to-proton charge-mass ratio, Nature 601.7891 (2022): 53-57. High precision magnetic moment measurements

$$\frac{\nu_L}{\nu_c} = \frac{\mu_p}{\mu_N} = \frac{g_p}{2}$$

• 1.5 p.p.b. Measurement of antiproton magnetic moment, Nature 550, 371-374 (2017)

BSE Antiproton Storage

- Reservoir trap a dedicated trap to store a cloud of antiprotons.
- We continuously record the number of particles trapped in the reservoid trap:

- The record for storing of antimatter (antiprotons): 405 days.
- S. Sellner, et al. Improved limit on the directly measured antiproton lifetime. New Journal of Physics, 19(8):083023, August 2017. $\tau_{\text{lower},\bar{p}} = 26.15 \,\text{a}$

3 SE Dominant Systematic Limitations

- Scaling of particle frequency with respect to frequency center of the detection resonator leads to frequency dependent shift of the measured frequency ratio.
- Main improvements for 2018/2019 measurement campaigns:
 - Improved magnetic field homoheneity
 - Improved magnetic shielding

٠

• Tuneable superconducting detector - measurements at constant trapping potential for different masses

• Temperature Shifts

$$\frac{\Delta v_c}{v_c} = \frac{v_+}{v_c^2} \Delta v_+ \frac{v_z}{v_c^2} \Delta v_z \approx \frac{1}{4\pi^2 m_0 v_z^2} \frac{B_2}{B_0} k_B T_z = -23.5(1.5) \frac{\text{p.p.t.}}{\text{K}},$$
$$E(t) = \left(\frac{1}{2} \frac{qE_0}{m} * t + \rho_{0,th}\right)^2 = E_{exc} + 2\sqrt{E_{th}} \sqrt{E_{exc}} + E_{th}$$

BSE Cyclotron frequency measurement

- In 2019, we implemented a new phase method with which we reached even the frequency scatters for protons on the order of 280(20) p.p.t. at a shot-to-shot sampling rate of 1/(265 s)
- 20 p.p.t. / 24h , but only possible during accelerator shutdown
- Eric A. Cornell, et al. PRL, 63(16):1674–1677, 1989.
 Sven Sturm, et al. PRL, 107(14):143003, September 2011.

