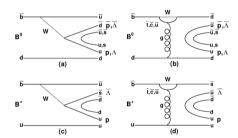
Non-leptonic hadron decays at the LHC

Radek Novotný on behalf of the ATLAS, CMS and LHCb collaborations

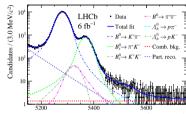
FPCP 2023, Lyon May 29, 2023



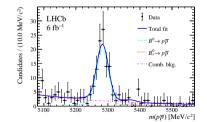
$ullet$ $B^0 o par p$ and $B^0_s o par p$ \dots	arXiv:2206.06673 [hep-ex]
$ullet$ $B^0 o par p par p$ and $B^0_s o par p par p$ $\dots \dots \dots$	arXiv:2211.08847 [hep-ex]
• $B^0 o \psi(2S) K_s^0 \pi^+ \pi^-$ and $B_s^0 o \psi(2S) K_s^0$	Eur. Phys. J. C 82 (2022) 499
• $B_c^+ o J/\psi D_s^{(*)+}$	JHEP 08 (2022) 087
• $B_c(2S)^+$ and $B_c^*(2S)^+$ cross section ratios	Phys. Rev. D 102 (2020) 092007
• Charmonium decays in $B o (K_s^0 K \pi) K$	arXiv:2304.14891 [hep-ex]
• $\Xi_b^- \pi^+ \pi^-$ decay studies	Phys. Rev. Lett. 126 (2021) 252003
 Prompt open-charm production cross sections 	JHEP 11 (2021) 225

$$B^0 \rightarrow p\bar{p}$$
 and $B^0_s \rightarrow p\bar{p}$ (1/2)
arXiv:2206.06673 [hep-ex]

- Differences in the way B mesons decay to baryonic versus purely mesonic final states have been found since the first experimental measurements
- To date, only three charmless two-body baryonic decays have been observed, namely the $B^+ \to p\bar{\Lambda}(1520)$, $B^+ \to p\bar{\Lambda}$ and $B^0 \to p\bar{p}$
- Some theoretical predictions allow a yield $\mathcal{B}(B_s^0 \to pp) \sim 10^{-8}$ that is experimentally accessible¹
- **LHCb** performed a search for the rare hadronic decay $B_s^0 \to p\bar{p}$ with integrated luminosity of 6 fb⁻¹
- Valuable information on the role of exchange and annihilation diagrams in baryonic B decays



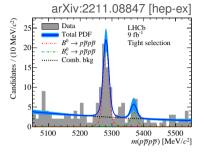
¹Y. K. Hsiao, S.-Y. Tsai, C.-C. Lih, and E. Rodrigues, Testing the W-exchange mechanism with two-body baryonic B decays, JHEP 04 (2020) 035, arXiv:1906.01805



$B^0 ightarrow hoar{p}$ and $B^0_s ightarrow hoar{p}$ (2/2)

arXiv:2206.06673 [hep-ex]

 $m(K^{+}\pi^{-}) [\text{MeV}/c^{2}]$


- The yields of $B^0 \to p\bar{p}$ and $B^0_s \to p\bar{p}$ are normalized to the $B^0 \to K^+\pi^-$ decays (Similar topology and a precisely measured branching fraction)
- $B^0 \to K^+\pi^-$ has multiple contributions from other decays treated as systematic effects
- The shape of the partially reconstructed background component is determined from a mixture of simulated samples
- The significances following Wilk's theorem¹ extracted from the fit to the $p\bar{p}$ data are 16.2 σ and 0.9 σ
- No significant evidence for $B_s^0 \to p\bar{p}$ was observed

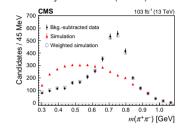
$$\mathcal{B}(B^0 \to p\bar{p}) = (1.27 \pm 0.15 \pm 0.05 \pm 0.04) \times 10^{-8}$$

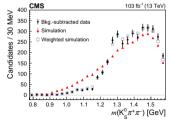
$$\mathcal{B}(B_s^0 \to p\bar{p}) < 4.4(5.1) \times 10^{-9} \text{at } 90\% \ (95\%) \text{ CL}$$

¹S. S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Stat. 9 (1938) 60. link

- The four-body decays are not as suppressed relative to the corresponding two-body decays
- Multi-body baryonic decay modes may be significantly increased due to a threshold enhancement effect in the baryon-antibaryon invariant mass spectrum
- The branching fraction for $p\bar{p}K^+K^-$ is $(4.5 \pm 0.5) \times 10^{-6}$, $p\bar{p}K^+\pi^-$ is $(1.4 \pm 0.3) \times 10^{-6}$ and $p\bar{p}\pi^+\pi^-$ is $(4.3 \pm 2.0) \times 10^{-7}$
- Neither the fully baryonic decay $B^0 o p\bar{p}p\bar{p}$ nor $B^0_s o p\bar{p}p\bar{p}$ have been observed previously

- LHCb performed a search for these decays using a dataset with integrated luminosity of 9 fb⁻¹
- Significances of 9.3σ and 4.0σ , including statistical and systematic uncertainties were observed
- The normalization channels $B^0 \to J/\psi K^{*0}$ and $B_s^0 \to J/\psi \phi$ were used
- The branching fractions are measured to be

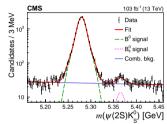

$$B^0 \to p\bar{p}p\bar{p} = (2.2 \pm 0.4 \pm 0.1 \pm 0.1) \times 10^{-8}$$

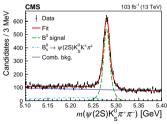

$$B_s^0 \to p\bar{p}p\bar{p} = (2.3 \pm 1.0 \pm 0.2 \pm 0.1) \times 10^{-8}$$

Eur. Phys. J. C 82 (2022) 499

- Studies involving K_s^0 are very challenging in the LHC environment
- $B^0 \to \psi(2S) K_s^0 \pi^+ \pi^-$ and $B_s^0 \to \psi(2S) K_s^0$ decays can potentially be used for CP asymmetry measurements
- The $B^0 \to \psi(2S) K_s^0 \pi^+ \pi^-$ can be used to search for intermediate exotic resonances
- CMS performed an analysis of these decays using data from 2017 and 2018 with total integrated luminosity of 103 fb⁻¹
- The $B^0 o \psi(2S) K_s^0$ decay was chosen as the normalization channel
- The $K_s^0 \to \pi^+\pi^-$ candidates are formed from displaced two-prong vertices
- Simulation does not take into account the intermediate resonance structure (re-weighting applied)

$$B^0 \to \psi(2S) K_s^0 \pi^+ \pi^-$$
 and $B_s^0 \to \psi(2S) K_s^0$ (2/2)

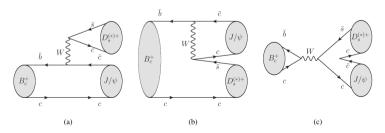

Eur. Phys. J. C 82 (2022) 499

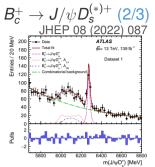

- Decays are observed with significances exceeding 5 standard deviations (B⁰_s → ψ(2S)K⁰_s ~ 5.2σ, B⁰ → ψ(2S)K⁰_sπ⁺π⁻ > 30σ)
- The resulting branching fraction ratios, measured for the first time

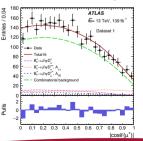
$$R_{s} = \frac{\mathcal{B}(B_{s}^{0} \to \psi(2S)K_{s}^{0})}{\mathcal{B}(B^{0} \to \psi(2S)K_{s}^{0})} = (0.69 \pm 0.14(\text{stat.}) \pm 0.11(\text{syst.}) \pm 0.34(f_{s}/f_{d})) \times 10^{-2}$$

$$R_{\pi^{+}\pi^{-}} = \frac{\mathcal{B}(B^{0} \to \psi(2S)K_{s}^{0}\pi^{+}\pi^{-})}{\mathcal{B}(B^{0} \to \psi(2S)K_{s}^{0})} = 0.480 \pm 0.013(\text{stat.}) \pm 0.032(\text{syst.})$$

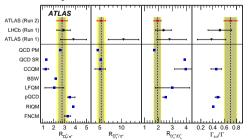
- The fragmentation fraction ratio $f_s/f_d=0.208\pm0.021$ was used
- No significant exotic narrow structures were observed
- Further studies with more data will be needed to investigate more precisely the internal dynamics of the $B^0 \to \psi(2S)K_s^0\pi^+\pi^-$ decay

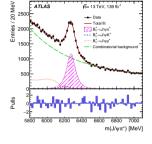



$$B_c^+ \to J/\psi D_s^{(*)+}$$
 (1/3)
JHEP 08 (2022) 087


- Operating LHC experiments at a centre-of-mass energy √s = 13 TeV opens new opportunities to measure the properties of the B_c meson precisely
- Previous studies were limited by the low B_c production cross-section
- These statistics allow measurement of $B_c^+ o J/\psi D_s^+$ and $B_c^+ o J/\psi D_s^{*+}$
- These decays were studied at ATLAS using 139 fb⁻¹ of integrated luminosity
- In this channel, B_c decays can occur through a weak transition of either heavy quark (a,b) as well as through a weak annihilation (c)

- J/ψ meson is reconstructed via its decay into a muon pair
- D_s^+ meson is reconstructed via the $D_s^+ \to \phi \pi^+$ decay, with the ϕ meson decaying into pairs of charged kaons
- D_s^{*+} meson decays into a D_s⁺ meson and a soft photon or π⁰ which is not reconstructed in the analysis
- The mass difference between D_s^+ and D_s^{*+} is sufficient for the two decay signals to be resolved as two distinct structures in the reconstructed mass of the $J/\psi D_s^+$ system
- $B_c^+ \to J/\psi D_s^{*+}$ decay is a pseudoscalar meson into two vector states (can be described in terms of three helicity amplitudes: A_{--} , A_{++} and A_{00})
- To suppress the combinatorial background, a BDT is employed
- The extended unbinned maximum-likelihood fit to the two-dimensional distribution of m(J/ψD_s⁺) and | cos θ'(μ⁺)| is performed




 $B_c^+ \to J/\psi D_s^{(*)+}$ (3/3) JHEP 08 (2022) 087

• $B_c^+ \to J/\psi \pi^+$ decay is used as a reference to measure the branching fractions such as:

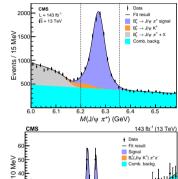
$$R_{D_{\mathcal{S}}^{(*)+}/\pi^{+}} = rac{\mathcal{B}(\mathcal{B}_{c}^{+} o J/\psi D_{\mathcal{S}}^{(*)+})}{\mathcal{B}(\mathcal{B}_{c}^{+} o J/\psi \pi^{+})}$$

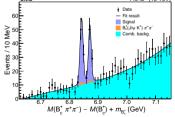
• $\Gamma_{\pm\pm}/\Gamma$ is the transverse polarization fraction in the $B_c^{*+} \to J/\psi D_s^{*+}$ decays

- All results are consistent with the earlier measurements by ATLAS¹ and LHCb²
- Results compared with the theory predictions
- A QCD (PM) relativistic potential model agrees well

Non-leptonic hadron decays at the LHC, May 29, 2023

¹ ATLAS Collaboration: Eur. Phys. J. C 76 (2016) 4


LHCb Collaboration: Phys. Rev. D 87 (2013) 112012,
 [Addendum: Phys. Rev. D 89 (2014) 019901]



$B_c(2S)^+$ and $B_c^*(2S)^+$ cross section ratios (1/2)

Phys. Rev. D 102 (2020) 092007

- B_c(2S)⁺ and B_c^{*}(2S)⁺ were observed by ATLAS and were analysed by LHCb and CMS as well
- The masses of the $B_c(2S)^+$ and $B_c^*(2S)^+$ states are found to be consistent with theoretical predictions^{1–3}
- These results stimulated new theoretical studies aimed at reaching a better understanding of the B_c⁺ quarkonium family
- The latest results are by CMS who analyzed the full Run2 with 143 fb⁻¹ of data
- The $B_c^{(*)}(2S) o B_c^{(*)+} \pi^+ \pi^-$ is followed by $B_c^+ o J/\psi \pi^+$ decay
- The B_c^* decay into a B_c and soft photon that is not reconstructed
- The fit was performed for the distribution $\mathcal{M}(B_c^+\pi^+\pi^-) \mathcal{M}(B_c^+) + m_{B_c^+}$ (This variable was used since it provides better resolution)

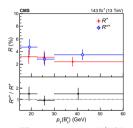
¹ E. B. Gregory et al. Phys. Rev. Lett. 104 (2010) 022001

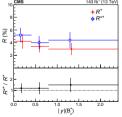
² R. J. Dowdall et al. Phys. Rev. D 86 (2012) 094510

³ N. Mathur et al. Phys. Rev. Lett. 121 (2018) 202002

$B_c(2S)^+$ and $B_c^*(2S)^+$ cross section ratios (2/2)

Phys. Rev. D 102 (2020) 092007


- The main challenge in this cross-section measurement was evaluation of the corresponding (relative) detection efficiencies
- 'Pions' reflects the uncertainty in the reconstruction efficiency of the two pions emitted in decays

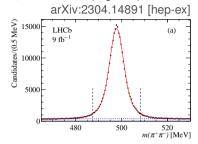

	Central	Stat.	Spread	Pions
$\epsilon(B_c(2S)^+)/\epsilon(B_c^+)$	0.196	1.1%	1.8%	4.2%
$\epsilon(\mathrm{B}_{\mathrm{c}}^{*}(\mathrm{2S})^{+})/\epsilon(\mathrm{B}_{\mathrm{c}}^{+})$	0.187	1.0%	1.6%	4.2%
$\epsilon(B_c^*(2S)^+)/\epsilon(B_c(2S)^+)$	0.955	1.4%	0.9%	_

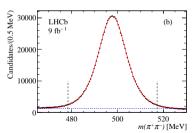
• The ratios of the $B_c^{(*)}(2S)^+ \to B_c^+$ and $B_c^*(2S)^+ \to B_c(2S)^+$ cross sections, R^{*+} , R^+ , and R^{*+}/R^+ were measured

$$R^+ = (3.47 \pm 0.63(stat) \pm 0.33(syst))\%$$

 $R^{*+} = (4.69 \pm 0.71(stat) \pm 0.56(syst))\%$
 $R^{*+}/R+ = 1.35 \pm 0.32(stat) \pm 0.09(syst)$

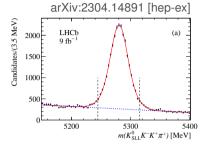
 The dependencies on the transverse momentum p_T and rapidity were studied

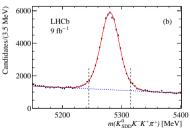




Charmonium decays in $B \to (K_s^0 K \pi) K$ (1/3)

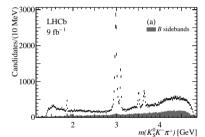
- The B⁺ → K_s⁰K⁺K⁻π⁺ and B⁺ → K_s⁰K⁺K⁺π⁻ decays are studied since K_s⁰Kπ invariant mass spectra from both decay modes reveal a rich content of charmonium resonances
- A simple factorization method used to describe these events is incomplete since it fails to describe the B → \(\chi_{c0} K\) mode
- LHCb performed a study using Run1 and Run2 datasets with combined integrated luminosity of 9 fb⁻¹ focusing on the precise measurement of charmonium parameters
- $K_s^0 \to \pi^+\pi^-$ reconstruction in two categories: the first involving K_s^0 mesons that decay early enough for the pions to be reconstructed inside the VELO (K_{SLL}^0), and the second containing K_s^0 mesons that decay later such that track segments from the pions are outside the VELO (K_{SDD}^0)
- K_{SLL}^0 has better mass, momentum and vertex resolution
- Both of these categories were used to reconstruct the B meson

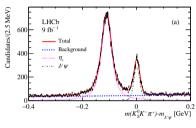


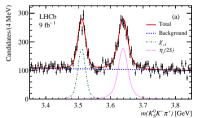


Charmonium decays in $B \to (K_s^0 K \pi) K$ (1/3)

- The B⁺ → K_s⁰K⁺K⁻π⁺ and B⁺ → K_s⁰K⁺K⁺π⁻ decays are studied since K_s⁰Kπ invariant mass spectra from both decay modes reveal a rich content of charmonium resonances
- A simple factorization method used to describe these events is incomplete since it fails to describe the $B \to \chi_{c0} K$ mode
- LHCb performed a study using Run1 and Run2 datasets with combined integrated luminosity of 9 fb⁻¹ focusing on the precise measurement of charmonium parameters
- $K_s^0 \to \pi^+\pi^-$ reconstruction in two categories: the first involving K_s^0 mesons that decay early enough for the pions to be reconstructed inside the VELO (K_{SLL}^0) , and the second containing K_s^0 mesons that decay later such that track segments from the pions are outside the VELO (K_{SDD}^0)
- K_{SLL}^0 has better mass, momentum and vertex resolution
- Both of these categories were used to reconstruct the B meson

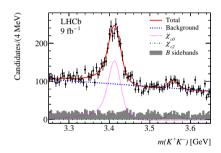



Charmonium decays in $B \to (K_s^0 K \pi) K$ (2/3)


- The $K_S^0 K \pi$ invariant-mass spectra for events in the B^+ signal region, summed over the K_{SJJ}^0 and K_{SDD}^0 datasets
- We can see a broad spectrum of resonances such as η_c,
 J/ψ, χ_{c1} and η_c(2S)

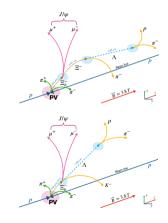
- The measurements of charmonium-resonance parameters such as mass, width and branching ratio are performed with binned fits to the $K_S^0 K \pi$ invariant-mass spectra separately in the $\eta_c J/\psi$ and the $\chi_{c1} \eta_c(2S)$ mass regions
- Best determinations from a single measurement

arXiv:2304.14891 [hep-ex]



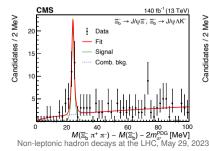
Charmonium decays in $B \rightarrow (K_s^0 K \pi) K$ (3/3) arXiv:2304.14891 [hep-ex]

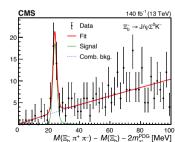
- Looking at the K^+K^- invariant mass spectrum from the $B \to K_s^0 K^+K^-\pi^+$ decays we can see the $\chi_{c0} \chi_{c2}$ region
- First observation of branching fraction of ${\cal B}^+ o \chi_{\rm c0} {\it K}_{\rm S}^0 \pi^+$ is reported
- Evidence of $B^+ \to \chi_{c2} K_s^0 \pi^+$
- Measured branching fractions using (top) the η_c and (bottom) the J/ψ resonance as reference for $B^+ \to K_s^0 K^+ K^- \pi^+$ data

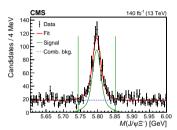

Final state	\mathcal{B}_{∞} (×10 ⁻³)	PDG ($\times 10^{-3}$)
$B^+ \to \chi_{c0} K^0 \pi^+$	$1.38 \pm 0.07 \pm 0.11 \pm 0.32$	
$B^+ \to \chi_{c2} K^0 \pi^+$	$0.87 \pm 0.20 \pm 0.08 \pm 0.20$	0.116 ± 0.025
Final state	$\mathcal{B}_{\in} (\times 10^{-3})$	
$B^+ \to \chi_{c0} K^0 \pi^+$	$1.45 \pm 0.08 \pm 0.11 \pm 0.16$	
$B^+ o \chi_{c2} K^0 \pi^+$	$0.92 \pm 0.21 \pm 0.08 \pm 0.10$	

 $\Xi_b^- \pi^+ \pi^-$ decay studies (1/2) Phys. Rev. Lett. 126 (2021) 252003

- The \(\perp\) baryon family consists of isodoublet states composed of bsq (\(q = u || d\)) quarks
- Various theoretical models and calculations predict a spectrum of excited \(\exists_b\)
- Three of the four excited states with $j_{qs}=1$ were observed in $\Xi_b^-\pi^+$ and $\Xi_b^0\pi^-$ decays
- **CMS** focused on the search for the Ξ_b^- excited states in the $\Xi_b^-\pi^+\pi^-$ invariant mass spectrum using a dataset with integrated luminosity of 140 fb⁻¹
- The ground state Ξ_b is reconstructed via its decays to J/ψΞ⁻ and J/ψΛK⁻, followed by the decays Ξ⁻ → Λπ⁻ and Λ → pπ⁻





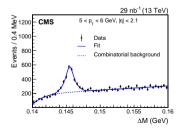

 $\Xi_b^- \pi^+ \pi^-$ decay studies (2/2) Phys. Rev. Lett. 126 (2021) 252003

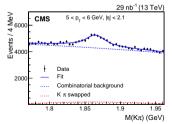

• Partially reconstructed $\Xi_b^- \to J/\psi \Sigma^0 K^-$ events were included with the shape parameters fixed from simulation studies

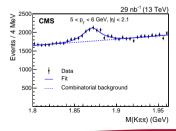
- Independent unbinned extended maximum-likelihood fits were applied to the mass difference variable ΔM
- A new resonance was observed with $\Delta M_{\Xi_b(6100)^-}=24.14\pm0.22~{
 m MeV}$ and upper limit on the width of $\Gamma(\Xi_b(6100)^-)<1.9~{
 m MeV}$
- The significance varies between 6.2σ and 6.7σ

Prompt open-charm production cross sections (1/2)

JHEP 11 (2021) 225

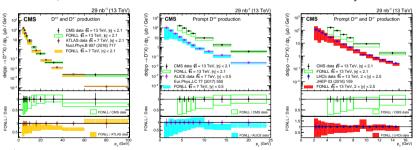

- · Cross-section measurement of open-charm mesons is an important test of QCD
- **CMS** studied the cross sections for the prompt production of D^{*+} , D^0 , and D^+ mesons using 29 nb⁻¹ of pp collisions at 13 TeV collected in year 2016 (unbiased trigger with high prescale)


•
$$pp \to D^{*+}X \to D^0\pi_c^+X \to K^-\pi^+\pi_c^+X$$

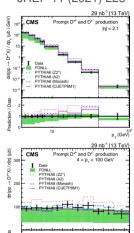

•
$$pp \rightarrow D^0 X \rightarrow K^- \pi^+ X$$

•
$$pp \rightarrow D^+X \rightarrow K^-\pi^+\pi^+X$$

- π_s^+ "slow" pion has significantly lower momentum than K
- The mass distributions were fitted in bins of p_T and rapidity for $\Delta M = M(K^-\pi^+\pi_s^+) M(K^-\pi^+)$, $M(K\pi)$ and $M(K\pi\pi)$



Prompt open-charm production cross sections (2/2)


 Measured production cross-sections were compared with theoretical predictions using the FONLL¹ and various Pythia models²

- The agreement with the different predictions is fair in the wide kinematic range analyzed
- The cross-sections were also compared with the other measurements from ATLAS, ALICE and LHCb and also with PbPb data measured by CMS

¹ M. Cacciari et.al. JHEP 05 (1998) 007 and Eur. Phys. J. C 75 (2015) 610

JHEP 11 (2021) 225

² T. Sjostrand et.al. JHEP 05 (2006) 026 and Comput. Phys. Commun. 191 (2015) 159

- The non-leptonic decays contain a broad spectrum of interesting physics that can be studied in the various channels
- The main goal is to understand the production dynamics of the hadronic decays and precisely describe their parameters
- With a large sample of LHC data at $\sqrt{s} = 13 \,\text{TeV}$ the rare processes are experimentally accessible
- New results help to improve the theoretical models

LYON

Stay tuned for new results!