QCD effects in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays

Nico Gubernari

Based on
arXiv: 2011.09813, 2206.03797, 2305.06301
in collaboration with
Danny van Dyk, Javier Virto, and Méril Reboud

21st Conference on Flavor Physics and CPV
IP2I - Université de Lyon
29-May-2023

SM predictions for BRs in rare decays

test the SM and constrain new physics by comparing theory predictions and exp. measurements of, e.g., branching ratios $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$

agreement between theory and experiment for LFU ratios R_{K} and $R_{K^{*}}$, but tension remains for $b \rightarrow s \mu^{+} \mu^{-}$observables \Rightarrow need to understand this tension
focus of this talk: how to obtain these SM predictions and what ingredients are needed

Theoretical framework

$b \rightarrow s \ell^{+} \ell^{-}$effective Hamiltonian

transitions described by the effective Hamiltonian

$$
\mathcal{H}\left(b \rightarrow s \ell^{+} \ell^{-}\right)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} C_{i}(\mu) O_{i}(\mu) \quad \mu=m_{b}
$$

main contributions to $B_{(s)} \rightarrow\left\{K^{(*)}, \phi\right\} \ell^{+} \ell^{-}$in the SM given by local operators O_{7}, O_{9}, O_{10}

$$
O_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} \quad O_{9}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma_{\mu} \ell\right) \quad O_{10}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right)
$$

Charm loop in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$

additional non-local contributions come from O_{1}^{c} and O_{2}^{c} combined with the e.m. current (charm-loop contribution)

$$
O_{1}^{c}=\left(\bar{s}_{L} \gamma^{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right) \quad O_{2}^{c}=\left(\bar{s}_{L}^{j} \gamma^{\mu} c_{L}^{i}\right)\left(\bar{c}_{L}^{i} \gamma_{\mu} b_{L}^{j}\right)
$$

Decay amplitude for $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays

calculate decay amplitudes precisely to probe the SM
$b \rightarrow s \mu^{+} \mu^{-}$anomalies: NP or underestimated systematic uncertainties?
(analogous formulas apply to $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$decays)

$$
\mathcal{A}\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right)=\mathcal{N}\left[\left(C_{9} L_{V}^{\mu}+C_{10} L_{A}^{\mu}\right) \mathcal{F}_{\mu}-\frac{L_{V}^{\mu}}{q^{2}}\left(C_{7} \mathcal{F}_{T, \mu}+\mathcal{H}_{\mu}\right)\right]
$$

Decay amplitude for $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays

calculate decay amplitudes precisely to probe the SM
$b \rightarrow s \mu^{+} \mu^{-}$anomalies: NP or underestimated systematic uncertainties?
(analogous formulas apply to $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$decays)

$$
\mathcal{A}\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right)=\mathcal{N}\left[\left(C_{9} L_{V}^{\mu}+C_{10} L_{A}^{\mu}\right) \mathcal{F}_{\mu}-\frac{L_{V}^{\mu}}{q^{2}}\left(C_{7} \mathcal{F}_{T, \mu}+\mathcal{H}_{\mu}\right)\right]
$$

local hadronic matrix elements

$$
\mathcal{F}_{\mu}=\left\langle K^{(*)}(k)\right| O_{7,9,10}^{\mathrm{had}}|B(k+q)\rangle
$$

non-local hadronic matrix elements

$$
\mathcal{H}_{\mu}=i \int d^{4} x e^{i q \cdot x}\left\langle K^{(*)}(k)\right| T\left\{j_{\mu}^{\mathrm{em}}(x),\left(C_{1} O_{1}^{c}+C_{2} O_{2}^{c}\right)(0)\right\}|B(k+q)\rangle
$$

Form factors definitions

form factors (FFs) parametrize hadronic matrix elements
FFs are functions of the momentum transfer squared q^{2} local FFs

$$
\mathcal{F}_{\mu}(k, q)=\sum_{\lambda} \mathcal{S}_{\mu}^{\lambda}(k, q) \mathcal{F}_{\lambda}\left(q^{2}\right)
$$

computed with lattice QCD and light-cone sum rules with good precision 3\% - 20\%

Form factors definitions

form factors (FFs) parametrize hadronic matrix elements
FFs are functions of the momentum transfer squared q^{2}
local FFs

$$
\mathcal{F}_{\mu}(k, q)=\sum_{\lambda} \delta_{\mu}^{\lambda}(k, q) \mathcal{F}_{\lambda}\left(q^{2}\right)
$$

computed with lattice QCD and light-cone sum rules with good precision 3\% - 20\%
non-local FFs

$$
\mathcal{H}_{\mu}(k, q)=\sum_{\lambda} \mathcal{S}_{\mu}^{\lambda}(k, q) \mathcal{H}_{\lambda}\left(q^{2}\right)
$$

calculated using an Operator Product Expansion (OPE) or QCD factorization or ... (variety of approaches, most of them model-dependent)
large uncertainties \rightarrow reduce uncertainties for a better understanding of rare B decays

Local form factors

Methods to compute FFs

non-perturbative techniques are needed to compute FFs

1. Lattice QCD (LQCD)
numerical evaluation of correlators in a finite and discrete space-time more efficient usually at high q^{2}
reducible systematic uncertainties
2. Light-cone sum rules (LCSRs)
based on unitarity, analyticity, and quark-hadron duality approximation need universal non-perturbative inputs (light-meson or B-meson distribution amplitudes) only applicable at low q^{2} non-reducible systematic uncertainties
complementary approaches to calculate FFs
in the long run LQCD will dominate the theoretical predictions (smaller and reducible syst unc.)

Local form factors predictions

available theory calculations for local FFs \mathcal{F}_{λ}

$B \rightarrow K$:

- LQCD calculations at high q^{2}
[HPQCD 2013/2023] [FNAL/MLLC 2015]
and in the whole semileptonic region
[HPQCD 2023]
- LCSR at low q^{2}
[Khodjamirian/Rusov 2017] [NG/Kokulu/van Dyk 2018]
$B \rightarrow K^{*}$ and $B_{s} \rightarrow \phi:$
- LQCD calculations at high q^{2}
[Horgan et al. 2015]
- LCSR calculation at low q^{2}
[Bharucha et al. 2015] [NG/Kokulu/van Dyk 2018]

Local form factors predictions

available theory calculations for local FFs $\mathcal{F}_{\boldsymbol{\lambda}}$

$B \rightarrow K$:

- LQCD calculations at high q^{2} [HPQCD 2013/2023] [FNAL/MILC 2015]
and in the whole semileptonic region
[HPQCD 2023]
- LCSR at low q^{2}
[Khodjamirian/Rusov 2017] [NG/Kokulu/van Dyk 2018]
$B \rightarrow K^{*}$ and $B_{s} \rightarrow \phi:$
- LQCD calculations at high q^{2}
[Horgan et al. 2015]
- LCSR calculation at low q^{2}
[Bharucha et al. 2015] [NG/Kokulu/van Dyk 2018]
$B \rightarrow K$ FFs excellent status (need independent calculation at low q^{2})
more LQCD results needed for vector states (for high precision K^{*} width cannot be neglected)
how to combine different calculations for the same channel?
how to obtain result in the whole semileptonic region if not available from LQCD?
obtain local $F F s \mathcal{F}_{\boldsymbol{\lambda}}$ in the whole semileptonic region by either
- extrapolating LQCD calculations to low q^{2}
- or combining LQCD and LCSRs

Map for local FFs

obtain local $\operatorname{FFs} \mathcal{F}_{\boldsymbol{\lambda}}$ in the whole semileptonic region by either

- extrapolating LQCD calculations to low q^{2}
- or combining LQCD and LCSRs
\mathcal{F}_{λ} analytic functions of q^{2} except for isolated $s \bar{b}$ poles and a branch cut for $q^{2}>t_{\Gamma}=\left(M_{B_{S}}+(2) M_{\pi}\right)^{2}$
branch cut differs from the pair production threshold: $t_{\Gamma} \neq t_{+}=\left(M_{B}+M_{K^{(*)}}\right)^{2}$ contrary to, e.g., $B \rightarrow \pi$

Map for local FFs

obtain local $\operatorname{FFs} \mathcal{F}_{\boldsymbol{\lambda}}$ in the whole semileptonic region by either

- extrapolating LQCD calculations to low q^{2}
- or combining LQCD and LCSRs
$\mathcal{F}_{\boldsymbol{\lambda}}$ analytic functions of q^{2} except for isolated $s \bar{b}$ poles
and a branch cut for $q^{2}>t_{\Gamma}=\left(M_{B_{s}}+(2) M_{\pi}\right)^{2}$
branch cut differs from the pair production threshold:
$t_{\Gamma} \neq t_{+}=\left(M_{B}+M_{K^{(*)}}\right)^{2}$ contrary to, e.g., $B \rightarrow \pi$
define the map

$$
z\left(q^{2}\right)=\frac{\sqrt{t_{\Gamma}-q^{2}}-\sqrt{t_{\Gamma}}}{\sqrt{t_{\Gamma}-q^{2}}+\sqrt{t_{\Gamma}}}
$$

previous works on $B \rightarrow K^{(*)}$ local FFs always approximated $t_{\Gamma}=t_{+}$ non-quantifiable systematic uncertainties

Parametrization for $\mathcal{F}_{\boldsymbol{\lambda}}$

\mathcal{F}_{λ} analytic in the open unit disk \Rightarrow expand \mathcal{F}_{λ} in a Taylor series in \mathbf{z} (up to some known function) simple (BSZ) z parametrization \Rightarrow unbounded coefficients ${ }_{\text {[Bharucha/Straub/Zwicky 2015] }}$

$$
\mathcal{F}_{\lambda}=\frac{1}{1-\frac{q^{2}}{M_{\mathcal{F}}^{2}}} \sum_{k=0}^{\infty} a_{k} z^{k}
$$

Parametrization for $\mathcal{F}_{\boldsymbol{\lambda}}$

\mathcal{F}_{λ} analytic in the open unit disk \Rightarrow expand \mathcal{F}_{λ} in a Taylor series in \boldsymbol{z} (up to some known function) simple (BSZ) z parametrization \Rightarrow unbounded coefficients [Bharucha/Straub/Zwicky 2015]

$$
\mathcal{F}_{\lambda}=\frac{1}{1-\frac{q^{2}}{M_{\mathcal{F}}^{2}}} \sum_{k=0}^{\infty} a_{k} z^{k}
$$

BGL parametrization \Rightarrow valid only if $t_{\Gamma}=t_{+}$, monomials orthonormal on the unit circle

$$
\mathcal{F}_{\lambda}=\frac{1}{\mathcal{P}(z) \phi(z)} \sum_{k=0}^{\infty} b_{k} z^{k} \quad \sum_{k=0}^{\infty}\left|b_{k}\right|^{2}<1
$$

Parametrization for $\mathcal{F}_{\boldsymbol{\lambda}}$

$\mathcal{F}_{\boldsymbol{\lambda}}$ analytic in the open unit disk $\Rightarrow \operatorname{expand} \mathcal{F}_{\lambda}$ in a Taylor series in \boldsymbol{z} (up to some known function) simple (BSZ) z parametrization \Rightarrow unbounded coefficients ${ }_{\text {[Bharucha/Straub/Zwicky 2015] }}$

$$
\mathcal{F}_{\lambda}=\frac{1}{1-\frac{q^{2}}{M_{\mathcal{F}}^{2}}} \sum_{k=0}^{\infty} a_{k} z^{k}
$$

BGL parametrization \Rightarrow valid only if $t_{\Gamma}=t_{+}$, monomials orthonormal on the unit circle

$$
\mathcal{F}_{\lambda}=\frac{1}{\mathcal{P}(z) \phi(z)} \sum_{k=0}^{\infty} b_{k} z^{k} \quad \sum_{k=0}^{\infty}\left|b_{k}\right|^{2}<1
$$

GvDV parametrization \Rightarrow valid also for $t_{\Gamma} \neq t_{+}$, generalization of BGL , polynomials orthonormal on the arc of the unit circle
[NG/van Dyk/Virto 2020]

$$
\mathcal{F}_{\lambda}=\frac{1}{\mathcal{P}(z) \phi(z)} \sum_{k=0}^{\infty} c_{k} p_{k}(z) \quad \sum_{k=0}^{\infty}\left|c_{k}\right|^{2}<1
$$

fit this parametrization to LQCD (and LCSR) results and use new improved bounds

Local form factors predictions

$$
\mathcal{A}\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right)=\mathcal{N}\left[\left(C_{9} L_{V}^{\mu}+C_{10} L_{A}^{\mu}\right) \mathcal{F}_{\mu}-\frac{L_{V}^{\mu}}{q^{2}}\left(C_{7} \mathcal{F}_{T, \mu}+\mathcal{H}_{\mu}\right)\right]
$$

fit available inputs to

$$
\mathcal{F}_{\lambda}=\frac{1}{\mathcal{P}(z) \phi(z)} \sum_{k=0}^{3} c_{k} p_{k}(z) \quad \sum_{k=0}^{3}\left|c_{k}\right|^{2}<1
$$

obtain numerical results for the for $B \rightarrow K^{(*)}$ and $B_{s} \rightarrow \phi$ in the whole semileptonic region
[NG/Reboud/van Dyk/Virto 2023]
first simultaneous fit of these FFs
systematic uncertainties under control large p values
results given in machine readable files

Non-local form factors

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local FFs \mathcal{H}_{λ} using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local FFs \mathcal{H}_{λ} using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{\nu}_{\lambda}\left(q^{2}\right)+\cdots
$$

leading power (LO in α_{s})

+ hard gluons $\left(\alpha_{s}\right)$ corrections

[Bell/Huber 2014] [Asatrian/Greub/Virto 2019]

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local FFs \mathcal{H}_{λ} using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

leading power (LO in α_{s})

+ hard gluons $\left(\alpha_{s}\right)$ corrections

[Khodjamirian et al. 2010]
[NG/van Dyk/Virto 2020]

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local FFs \mathcal{H}_{λ} using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

2. extract \mathcal{H}_{λ} at $q^{2}=m_{J / \psi}^{2}$ from $B \rightarrow K^{(*)} J / \psi$ and $B_{s} \rightarrow \phi J / \psi$ measurements (decay amplitudes independent of the local FFs)

Obtaining theoretical predictions for \mathcal{H}_{λ}

1. compute the non-local $\mathrm{FFs} \mathcal{H}_{\lambda}$ using a light-cone OPE at negative q^{2}

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

2. extract \mathcal{H}_{λ} at $q^{2}=m_{J / \psi}^{2}$ from $B \rightarrow K^{(*)} J / \psi$ and $B_{s} \rightarrow \phi J / \psi$ measurements (decay amplitudes independent of the local FFs)
3. new approach: interpolate these two results to obtain theoretical predictions in the low $q^{2}\left(0<q^{2}<8 \mathrm{GeV}^{2}\right)$ region \Rightarrow compare with experimental data
need a parametrization to interpolate \mathcal{H}_{λ} : which is the optimal parametrization?

Map for non-local FFs

similar situation with respect to $\mathcal{F}_{\boldsymbol{\lambda}}$
\mathcal{H}_{λ} analytic functions of q^{2} except for isolated $c \bar{c}$ poles $(J / \psi$ and $\psi(2 S))$ and a branch cut for $q^{2}>\hat{t}_{\Gamma}=4 M_{D}^{2}$
branch cut differs from the pair production threshold:
$t_{\Gamma} \neq t_{+}=\left(M_{B}+M_{K^{(*)}}\right)^{2}$

Map for non-local FFs

similar situation with respect to $\mathcal{F}_{\boldsymbol{\lambda}}$
\mathcal{H}_{λ} analytic functions of q^{2} except for isolated $c \bar{c}$ poles $(J / \psi$ and $\psi(2 S))$ and a branch cut for $q^{2}>\hat{t}_{\Gamma}=4 M_{D}^{2}$
branch cut differs from the pair production threshold:
$t_{\Gamma} \neq t_{+}=\left(M_{B}+M_{K^{(*)}}\right)^{2}$
define the map

$$
\hat{z}\left(q^{2}\right)=\frac{\sqrt{\hat{t}_{\Gamma}-q^{2}}-\sqrt{\hat{t}_{\Gamma}}}{\sqrt{\hat{t}_{\Gamma}-q^{2}}+\sqrt{\hat{t}_{\Gamma}}}
$$

only difference between \mathcal{F}_{λ} and \mathcal{H}_{λ} is the threshold \hat{t}_{Γ} and the poles due to more complicate structure of the operator

Parametrizations for \mathcal{H}_{λ}

simple q^{2} parametrization [Jäger/Camalich 2012, Ciuchini et al. 2015]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=\mathcal{H}_{\lambda}^{\mathrm{QCDF}}\left(q^{2}\right)+\mathcal{H}_{\lambda}^{\text {rest }}(0)+\frac{q^{2}}{M_{B}^{2}} \mathcal{H}_{\lambda}^{\text {rest,' }}(0)+\frac{\left(q^{2}\right)^{2}}{M_{B}^{4}} \mathcal{H}_{\lambda}^{\text {rest,/" }}(0)+\cdots
$$

simple z parametrization [Bobeth/Chrzaszcz/van Dyk/Virto 2017]

$$
\mathcal{H}_{\lambda}(z) \propto \sum_{k=0}^{\infty} \alpha_{k} z^{k}
$$

GvDV parametrization \Rightarrow new (bounded) parametrization, \hat{z} polynomials [NG/van Dyk/Virto 2020]

$$
\mathcal{H}_{\lambda}(\hat{z})=\frac{1}{\mathcal{P}(z) \phi(z)} \sum_{k=0}^{\infty} \beta_{k} p_{k}(\hat{z}) \quad \sum_{k=0}^{\infty}\left|\beta_{k}\right|^{2}<1
$$

fit this parametrization to OPE result and $B \rightarrow K^{(*)} J / \psi$ data

Non-local form factors predictions

$$
\mathcal{A}\left(B \rightarrow K^{(*)} \ell \ell\right)=\mathcal{N}\left[\left(C_{9} L_{V}^{\mu}+C_{10} L_{A}^{\mu}\right) \mathcal{F}_{\mu}-\frac{L_{V}^{\mu}}{q^{2}}\left(C_{7} \mathcal{F}_{T, \mu}+\mathcal{H}_{\mu}\right)\right]
$$

obtain numerical results for the non-local FFs \mathcal{H}_{λ}

$$
\mathcal{H}_{\lambda} \cong \sum_{n=0}^{5} \beta_{n} p_{n}(\hat{z}) \quad \sum_{k=0}^{5}\left|\beta_{k}\right|^{2}<1
$$

fit the \hat{z} parametrization

- light-cone OPE calculation at negative q^{2}
- $B \rightarrow K^{(*)} J / \psi$ and $B_{S} \rightarrow \phi J / \psi$ measurements at $q^{2}=m_{J / \psi}^{2}$
- unitarity bound
new approach to obtain non-local FFs
one fit per decay channel (all p values $>11 \%$)

SM predictions and confrontation with data

Standard Model predictions

using our local \mathcal{F}_{λ} and non-local \mathcal{H}_{λ} FFs values we predict observables (BRs and angular observables) for $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$, and $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$in the SM

- we do not use QCD factorization (QCDF)
like all previous SM predictions (non-quantifiable systematic uncertainty)
- theory uncertainties mostly due to local FFs
- coherent tension between SM predictions and experimental data

Comparison with measurements for $B \rightarrow K^{*} \mu^{+} \mu^{-}$

larger theory uncertainties due to less precise inputs for local FFs
\Rightarrow smaller tension but coherent shift w.r.t. data

Summary and conclusion

Summary and conclusion

1. reassess $B G L$ parametrization for local $F F s \mathcal{F}_{\lambda}$ to consider below threshold branch cut and improved unitarity bounds
combine LQCD (and LCSRs) inputs to get new results for $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$local FFs \mathcal{F}_{λ}

Summary and conclusion

1. reassess $B G L$ parametrization for local $F F s \mathcal{F}_{\boldsymbol{\lambda}}$ to consider below threshold branch cut and improved unitarity bounds
combine LQCD (and LCSRs) inputs to get new results for $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$local FFs \mathcal{F}_{λ}
2. new theoretical predictions using our OPE calculation for the non-local FFs \mathcal{H}_{λ} at $q^{2}<0$, experimental data for $B \rightarrow K^{(*)} J / \psi$, and a unitarity bound
new approach - \mathcal{H}_{λ} uncertainties can be systematically reduced with unitarity bound (more local form factors $\mathcal{F}_{\boldsymbol{\lambda}}$ calculations, saturating the unitarity bound...)

Summary and conclusion

1. reassess $B G L$ parametrization for local $F F s \mathcal{F}_{\lambda}$ to consider below threshold branch cut and improved unitarity bounds
combine LQCD (and LCSRs) inputs to get new results for $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$local FFs \mathcal{F}_{λ}
2. new theoretical predictions using our OPE calculation for the non-local FFs \mathcal{H}_{λ} at $q^{2}<0$, experimental data for $B \rightarrow K^{(*)} J / \psi$, and a unitarity bound
new approach - \mathcal{H}_{λ} uncertainties can be systematically reduced with unitarity bound (more local form factors $\mathcal{F}_{\boldsymbol{\lambda}}$ calculations, saturating the unitarity bound...)
3. new and precise SM predictions for observables in $B \rightarrow K^{* *)} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$decays
coherent deviations between SM and data in $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \phi \ell^{+} \ell^{-}$decays

Thank you!

Backup slides

Global fit to $b \rightarrow s \mu^{+} \mu^{-}$(results)

we obtain good fits, agreement between the three fits
substantial tension w.r.t. SM (in agreement with the literature)
pulls (p value of the SM hypothesis):

- 5.7σ for $B \rightarrow K \mu^{+} \mu^{-}+B_{S} \rightarrow \mu^{+} \mu^{-}$
- 2.7σ for $B \rightarrow K^{*} \mu^{+} \mu^{-}$
- 2.6σ for $B_{S} \rightarrow \phi \mu^{+} \mu^{-}$
local FFs $\mathcal{F}_{\boldsymbol{\lambda}}$ main uncertainties
present theory predictions for non-local FFs \mathcal{H}_{λ} cannot explain this tension

Missing something?

Ciuchini et al. 2022 (also way before) claim that $B \rightarrow \bar{D} D_{s} \rightarrow K^{(*)} \ell^{+} \ell^{-}$rescattering might have a sizable contribution $O(20 \%)$
is a mesonic estimate the best way to go? (many states contributing, interferences even harder to compute)
partonic calculation doesn't yield large contribution (LP OPE and NLO α_{s}) [Asatrian/Greub/Virto 2019]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=C_{\lambda}\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\tilde{C}_{\lambda}\left(q^{2}\right) \mathcal{V}_{\lambda}\left(q^{2}\right)+\cdots
$$

C_{λ} is complex valued for any q^{2} value due to branch cut in $p^{2}=M_{B}^{2}$ as expected
large duality violations? large NLP OPE or α_{s}^{2} corrections? spectator scattering?

