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SM predictions for BRs in rare decays

test the SM and constrain new physics by comparing theory predictions and exp. measurements

of, e.g., branching ratios 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ−

agreement between theory and experiment  for LFU ratios 𝑅𝐾 and 𝑅𝐾∗, 
but tension remains for 𝑏 → 𝑠𝜇+𝜇− observables ⟹ need to understand this tension 

focus of this talk: how to obtain these SM predictions and what ingredients are needed
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Theoretical framework



𝑏 → 𝑠ℓ+ℓ− effective Hamiltonian

transitions described by the effective Hamiltonian

ℋ 𝑏 → 𝑠ℓ+ℓ− = −
4𝐺𝐹

2
𝑉𝑡𝑏𝑉𝑡𝑠

∗ 

𝑖=1

10

𝐶𝑖 𝜇 𝑂𝑖 𝜇 𝜇 = 𝑚𝑏

main contributions to 𝐵 𝑠 → {𝐾(∗), 𝜙}ℓ+ℓ− in the SM given by local operators 𝑂7, 𝑂9, 𝑂10

𝑂7 =
𝑒

16𝜋2
𝑚𝑏 ҧ𝑠𝐿𝜎

𝜇𝜈𝑏𝑅 𝐹𝜇𝜈 𝑂9 =
𝑒2

16𝜋2
ҧ𝑠𝐿𝛾

𝜇𝑏𝐿 σℓ(തℓ𝛾𝜇ℓ) 𝑂10 =
𝑒2

16𝜋2
ҧ𝑠𝐿𝛾

𝜇𝑏𝐿 σℓ(തℓ𝛾𝜇𝛾5ℓ)

𝑂7 𝑂9, 𝑂10
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Charm loop in 𝐵 → 𝐾(∗)ℓ+ℓ−

additional non-local contributions come from 𝑂1
𝑐 and 𝑂2

𝑐 combined with the e.m. current

(charm-loop contribution)

𝑂1
𝑐 = ҧ𝑠𝐿𝛾

𝜇𝑐𝐿 ҧ𝑐𝐿𝛾𝜇𝑏𝐿 𝑂2
𝑐 = ҧ𝑠𝐿

𝑗
𝛾𝜇𝑐𝐿

𝑖 ҧ𝑐𝐿
𝑖𝛾𝜇𝑏𝐿

𝑗

Ԧ𝑞

𝑂1
𝑐 , 𝑂2

𝑐

e.m.
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Decay amplitude for 𝐵 → 𝐾(∗)ℓ+ℓ− decays

calculate decay amplitudes precisely to probe the SM 

𝑏 → 𝑠𝜇+𝜇− anomalies: NP or underestimated systematic uncertainties?

(analogous formulas apply to 𝐵𝑠 → 𝜙ℓ+ℓ− decays)

𝒜 𝐵 → 𝐾(∗)ℓ+ℓ− = 𝒩 𝐶9𝐿𝑉
𝜇
+ 𝐶10𝐿𝐴

𝜇
ℱ𝜇−

𝐿𝑉
𝜇

𝑞2
𝐶7 ℱ𝑇,𝜇+ℋ𝜇
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Decay amplitude for 𝐵 → 𝐾(∗)ℓ+ℓ− decays

calculate decay amplitudes precisely to probe the SM 

𝑏 → 𝑠𝜇+𝜇− anomalies: NP or underestimated systematic uncertainties?

(analogous formulas apply to 𝐵𝑠 → 𝜙ℓ+ℓ− decays)

𝒜 𝐵 → 𝐾(∗)ℓ+ℓ− = 𝒩 𝐶9𝐿𝑉
𝜇
+ 𝐶10𝐿𝐴

𝜇
ℱ𝜇−

𝐿𝑉
𝜇

𝑞2
𝐶7 ℱ𝑇,𝜇+ℋ𝜇

local hadronic matrix elements

ℱ𝜇= 𝐾 ∗ 𝑘 𝑂7,9,10
had 𝐵 𝑘 + 𝑞

non-local hadronic matrix elements

ℋ𝜇= 𝑖න𝑑4𝑥 𝑒𝑖𝑞⋅𝑥 𝐾 ∗ 𝑘 𝑇 𝑗𝜇
em(𝑥), (𝐶1𝑂1

𝑐 + 𝐶2𝑂2
𝑐)(0) 𝐵 𝑘 + 𝑞
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Form factors definitions

form factors (FFs) parametrize hadronic matrix elements

FFs are functions of the momentum transfer squared 𝑞2

local FFs

ℱ𝜇(𝑘, 𝑞) =

𝜆

𝒮𝜇
𝜆(𝑘, 𝑞) ℱ𝜆(𝑞

2)

computed with lattice QCD and light-cone sum rules with good precision 3% − 20%
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Form factors definitions

form factors (FFs) parametrize hadronic matrix elements

FFs are functions of the momentum transfer squared 𝑞2

local FFs

ℱ𝜇(𝑘, 𝑞) =

𝜆

𝒮𝜇
𝜆(𝑘, 𝑞) ℱ𝜆(𝑞

2)

computed with lattice QCD and light-cone sum rules with good precision 3% − 20%

non-local FFs

ℋ𝜇(𝑘, 𝑞) =

𝜆

𝒮𝜇
𝜆 𝑘, 𝑞 ℋ𝜆(𝑞

2)

calculated using an Operator Product Expansion (OPE) or QCD factorization or … 

(variety of approaches, most of them model-dependent)

large uncertainties → reduce uncertainties for a better understanding of rare 𝐵 decays
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Local form factors



non-perturbative techniques are needed to compute FFs

1. Lattice QCD (LQCD)

numerical evaluation of correlators in a finite and discrete space-time

more efficient usually at high 𝑞2

reducible systematic uncertainties 

2. Light-cone sum rules (LCSRs)

based on unitarity, analyticity, and quark-hadron duality approximation

need universal non-perturbative inputs (light-meson or 𝐵-meson distribution amplitudes)

only applicable at low 𝑞2

non-reducible systematic uncertainties

complementary approaches to calculate FFs

in the long run LQCD will dominate the theoretical predictions (smaller and reducible syst unc.)

Methods to compute FFs 6



Local form factors predictions

available theory calculations for local FFs ℱ𝜆

𝐵 → 𝐾 :

• LQCD calculations at high 𝑞2

[HPQCD 2013/2023] [FNAL/MILC 2015] 

and in the whole semileptonic region
[HPQCD 2023]

• LCSR at low 𝑞2

[Khodjamirian/Rusov 2017] [NG/Kokulu/van Dyk 2018]

7

𝐵 → 𝐾∗ and 𝐵𝑠 → 𝜙 :

• LQCD calculations at high 𝑞2

[Horgan et al. 2015]

• LCSR calculation at low 𝑞2

[Bharucha et al. 2015] [NG/Kokulu/van Dyk 2018]



Local form factors predictions

available theory calculations for local FFs ℱ𝜆

𝐵 → 𝐾 :

• LQCD calculations at high 𝑞2

[HPQCD 2013/2023] [FNAL/MILC 2015] 

and in the whole semileptonic region
[HPQCD 2023]

• LCSR at low 𝑞2

[Khodjamirian/Rusov 2017] [NG/Kokulu/van Dyk 2018]

𝐵 → 𝐾 FFs excellent status (need independent calculation at low 𝑞2 )

more LQCD results needed for vector states (for high precision 𝐾∗ width cannot be neglected)

how to combine different calculations for the same channel? 

how to obtain result in the whole semileptonic region if not available from LQCD? 

7

𝐵 → 𝐾∗ and 𝐵𝑠 → 𝜙 :

• LQCD calculations at high 𝑞2

[Horgan et al. 2015]

• LCSR calculation at low 𝑞2

[Bharucha et al. 2015] [NG/Kokulu/van Dyk 2018]



Map for local FFs

obtain local FFs ℱ𝜆 in the whole semileptonic region by either

• extrapolating LQCD calculations to low 𝑞2

• or combining LQCD and LCSRs  
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Map for local FFs

obtain local FFs ℱ𝜆 in the whole semileptonic region by either

• extrapolating LQCD calculations to low 𝑞2

• or combining LQCD and LCSRs  

ℱ𝜆 analytic functions of 𝑞2 except for isolated 𝑠ത𝑏 poles

and a branch cut for 𝑞2 > 𝑡Γ = 𝑀𝐵𝑠 + (2)𝑀𝜋
2

branch cut differs from the pair production threshold:

𝑡Γ ≠ 𝑡+ = 𝑀𝐵 +𝑀𝐾 ∗
2

contrary to, e.g., 𝐵 → 𝜋
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Map for local FFs

obtain local FFs ℱ𝜆 in the whole semileptonic region by either

• extrapolating LQCD calculations to low 𝑞2

• or combining LQCD and LCSRs  

ℱ𝜆 analytic functions of 𝑞2 except for isolated 𝑠ത𝑏 poles

and a branch cut for 𝑞2 > 𝑡Γ = 𝑀𝐵𝑠 + (2)𝑀𝜋
2

branch cut differs from the pair production threshold:

𝑡Γ ≠ 𝑡+ = 𝑀𝐵 +𝑀𝐾 ∗
2

contrary to, e.g., 𝐵 → 𝜋

define the map

𝑧 𝑞2 =
𝑡Γ − 𝑞2 − 𝑡Γ

𝑡Γ − 𝑞2 + 𝑡Γ

previous works on 𝐵 → 𝐾 ∗ local FFs always approximated 𝑡Γ = 𝑡+
non-quantifiable systematic uncertainties
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Parametrization for ℱ𝜆
ℱ𝜆 analytic in the open unit disk ⟹ expand ℱ𝜆 in a Taylor series in 𝒛 (up to some known function)

simple (BSZ) 𝑧 parametrization ⟹ unbounded coefficients

ℱ𝜆=
1

1 −
𝑞2

𝑀ℱ
2



𝑘=0

∞

𝑎𝑘 𝑧
𝑘

9

[Bharucha/Straub/Zwicky 2015]



Parametrization for ℱ𝜆
ℱ𝜆 analytic in the open unit disk ⟹ expand ℱ𝜆 in a Taylor series in 𝒛 (up to some known function)

simple (BSZ) 𝑧 parametrization ⟹ unbounded coefficients

ℱ𝜆=
1

1 −
𝑞2

𝑀ℱ
2



𝑘=0

∞

𝑎𝑘 𝑧
𝑘

BGL parametrization ⟹ valid only if 𝑡Γ = 𝑡+, monomials orthonormal on the unit circle

ℱ𝜆=
1

𝒫 𝑧 𝜙(𝑧)


𝑘=0

∞

𝑏𝑘 𝑧
𝑘 

𝑘=0

∞

𝑏𝑘
2 < 1

[Boyd/Grinstein/Lebed 1997]
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Parametrization for ℱ𝜆
ℱ𝜆 analytic in the open unit disk ⟹ expand ℱ𝜆 in a Taylor series in 𝒛 (up to some known function)

simple (BSZ) 𝑧 parametrization ⟹ unbounded coefficients

ℱ𝜆=
1

1 −
𝑞2

𝑀ℱ
2



𝑘=0

∞

𝑎𝑘 𝑧
𝑘

BGL parametrization ⟹ valid only if 𝑡Γ = 𝑡+, monomials orthonormal on the unit circle

ℱ𝜆=
1

𝒫 𝑧 𝜙(𝑧)


𝑘=0

∞

𝑏𝑘 𝑧
𝑘 

𝑘=0

∞

𝑏𝑘
2 < 1

GvDV parametrization ⟹ valid also for 𝑡Γ ≠ 𝑡+, generalization of BGL, polynomials orthonormal on the 

arc of the unit circle

ℱ𝜆=
1

𝒫 𝑧 𝜙(𝑧)


𝑘=0

∞

𝑐𝑘 𝑝𝑘(𝑧) 

𝑘=0

∞

𝑐𝑘
2 < 1

fit this parametrization to LQCD (and LCSR) results and use new improved bounds

[Boyd/Grinstein/Lebed 1997]
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[Bharucha/Straub/Zwicky 2015]

[NG/van Dyk/Virto 2020]



Local form factors predictions

𝒜 𝐵 → 𝐾(∗)ℓ+ℓ− = 𝒩 𝐶9𝐿𝑉
𝜇
+ 𝐶10𝐿𝐴

𝜇
ℱ𝜇−

𝐿𝑉
𝜇

𝑞2
𝐶7 ℱ𝑇,𝜇+ℋ𝜇

fit available inputs to

ℱ𝜆=
1

𝒫 𝑧 𝜙(𝑧)


𝑘=0

3

𝑐𝑘 𝑝𝑘 𝑧 

𝑘=0

3

𝑐𝑘
2 < 1

obtain numerical results for the for 𝐵 → 𝐾(∗) and 𝐵𝑠 → 𝜙
in the whole semileptonic region 

first simultaneous fit of these FFs

systematic uncertainties under control

large 𝑝 values

results given in machine readable files

10
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Non-local form factors



Obtaining theoretical predictions for ℋ𝜆

1. compute the non-local FFs ℋ𝜆 using a light-cone OPE at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯
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Obtaining theoretical predictions for ℋ𝜆

1. compute the non-local FFs ℋ𝜆 using a light-cone OPE at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯

11

+ hard gluons (𝛼𝑠) corrections

leading power (LO in 𝛼𝑠)

[Bell/Huber 2014] [Asatrian/Greub/Virto 2019]



Obtaining theoretical predictions for ℋ𝜆

1. compute the non-local FFs ℋ𝜆 using a light-cone OPE at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯

11

+ hard gluons (𝛼𝑠) corrections

soft gluon correction

non-perturbative

⟹ not 𝛼𝑠 suppressed

leading power (LO in 𝛼𝑠)

[Khodjamirian et al. 2010]

[NG/van Dyk/Virto 2020]
[Bell/Huber 2014] [Asatrian/Greub/Virto 2019]



Obtaining theoretical predictions for ℋ𝜆

1. compute the non-local FFs ℋ𝜆 using a light-cone OPE at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯

2. extract ℋ𝜆 at 𝑞2 = 𝑚𝐽/𝜓
2 from 𝐵 → 𝐾 ∗ 𝐽/𝜓 and 𝐵𝑠 → 𝜙 𝐽/𝜓 measurements 

(decay amplitudes independent of the local FFs)

light-cone OPE                                𝑞2 = 0 interpolate (exp. data)      𝑞2 = 𝑚𝐽/𝜓
2
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Obtaining theoretical predictions for ℋ𝜆

1. compute the non-local FFs ℋ𝜆 using a light-cone OPE at negative 𝑞2

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯

2. extract ℋ𝜆 at 𝑞2 = 𝑚𝐽/𝜓
2 from 𝐵 → 𝐾 ∗ 𝐽/𝜓 and 𝐵𝑠 → 𝜙 𝐽/𝜓 measurements 

(decay amplitudes independent of the local FFs)

3. new approach: interpolate these two results to obtain theoretical predictions 

in the low 𝑞2 (0 < 𝑞2 < 8 GeV2) region ⟹ compare with experimental data 

need a parametrization to interpolate ℋ𝜆: which is the optimal parametrization?

light-cone OPE                                𝑞2 = 0 interpolate (exp. data)      𝑞2 = 𝑚𝐽/𝜓
2
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Map for non-local FFs

similar situation with respect to ℱ𝜆

ℋ𝜆 analytic functions of 𝑞2 except for isolated 𝑐 ҧ𝑐 poles (𝐽/𝜓 and 𝜓(2𝑆))
and a branch cut for 𝑞2 > Ƹ𝑡Γ = 4𝑀𝐷

2

branch cut differs from the pair production threshold:

𝑡Γ ≠ 𝑡+ = 𝑀𝐵 +𝑀𝐾 ∗
2
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Map for non-local FFs

similar situation with respect to ℱ𝜆

ℋ𝜆 analytic functions of 𝑞2 except for isolated 𝑐 ҧ𝑐 poles (𝐽/𝜓 and 𝜓(2𝑆))
and a branch cut for 𝑞2 > Ƹ𝑡Γ = 4𝑀𝐷

2

branch cut differs from the pair production threshold:

𝑡Γ ≠ 𝑡+ = 𝑀𝐵 +𝑀𝐾 ∗
2

define the map

Ƹ𝑧 𝑞2 =
Ƹ𝑡Γ − 𝑞2 − Ƹ𝑡Γ

Ƹ𝑡Γ − 𝑞2 + Ƹ𝑡Γ

only difference between ℱ𝜆 and ℋ𝜆 is the threshold Ƹ𝑡Γ and the poles

due to more complicate structure of the operator

12
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Parametrizations for ℋ𝜆

simple 𝑞2 parametrization

ℋ𝜆 𝑞2 = ℋ𝜆
QCDF

𝑞2 +ℋ𝜆
rest 0 +

𝑞2

𝑀𝐵
2ℋ𝜆

rest,′(0) +
𝑞2 2

𝑀𝐵
4 ℋ𝜆

rest,′′ 0 +⋯

simple 𝑧 parametrization                              

ℋ𝜆 𝑧 ∝ 

𝑘=0

∞

𝛼𝑘𝑧
𝑘

GvDV parametrization ⟹ new (bounded) parametrization, Ƹ𝑧 polynomials

ℋ𝜆 Ƹ𝑧 =
1

𝒫 𝑧 𝜙(𝑧)


𝑘=0

∞

𝛽𝑘𝑝𝑘( Ƹ𝑧) 

𝑘=0

∞

𝛽𝑘
2 < 1

fit this parametrization to OPE result and 𝐵 → 𝐾 ∗ 𝐽/𝜓 data

[Jäger/Camalich 2012, Ciuchini et al. 2015]

[Bobeth/Chrzaszcz/van Dyk/Virto 2017]

[NG/van Dyk/Virto 2020]
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Non-local form factors predictions

𝒜 𝐵 → 𝐾(∗)ℓℓ = 𝒩 𝐶9𝐿𝑉
𝜇
+ 𝐶10𝐿𝐴

𝜇
ℱ𝜇−

𝐿𝑉
𝜇

𝑞2
𝐶7 ℱ𝑇,𝜇+ℋ𝜇

obtain numerical results for the non-local FFs ℋ𝜆

ℋ𝜆 ≅ 

𝑛=0

5

𝛽𝑛𝑝𝑛 Ƹ𝑧 

𝑘=0

5

𝛽𝑘
2 < 1

fit the Ƹ𝑧 parametrization

• light-cone OPE calculation at negative 𝑞2

• 𝐵 → 𝐾 ∗ 𝐽/𝜓 and 𝐵𝑠 → 𝜙 𝐽/𝜓 measurements at 𝑞2 = 𝑚𝐽/𝜓
2

• unitarity bound 

new approach to obtain non-local FFs

one fit per decay channel (all 𝑝 values > 11%)
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SM predictions and
confrontation with data



using our local ℱ𝜆 and non-local ℋ𝜆 FFs values

we predict observables (BRs and angular observables) 

for 𝐵 → 𝐾(∗)𝜇+𝜇−, and 𝐵𝑠 → 𝜙𝜇+𝜇− in the SM

• we do not use QCD factorization (QCDF)

like all previous SM predictions

(non-quantifiable systematic uncertainty)

• theory uncertainties mostly due to local FFs

• coherent tension between SM predictions and 

experimental data

Standard Model predictions 15

[TO BE UPDATED]



larger theory uncertainties due to less precise inputs for local FFs 

⟹ smaller tension but coherent shift w.r.t. data

Comparison with measurements for 𝐵 → 𝐾∗𝜇+𝜇− 16



Summary and conclusion



Summary and conclusion

1. reassess BGL parametrization for local FFs ℱ𝜆 to consider below threshold branch cut 

and improved unitarity bounds 

combine LQCD (and LCSRs) inputs to get new results for 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ− local FFs ℱ𝜆
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combine LQCD (and LCSRs) inputs to get new results for 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ− local FFs ℱ𝜆

2. new theoretical predictions using our OPE calculation for the non-local FFs ℋ𝜆 at 𝑞2 < 0, experimental 

data for 𝐵 → 𝐾(∗)𝐽/𝜓, and a unitarity bound

new approach ⎯ℋ𝜆 uncertainties can be systematically reduced with unitarity bound 

(more local form factors ℱ𝜆 calculations, saturating the unitarity bound…)
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Summary and conclusion

1. reassess BGL parametrization for local FFs ℱ𝜆 to consider below threshold branch cut 

and improved unitarity bounds 

combine LQCD (and LCSRs) inputs to get new results for 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ− local FFs ℱ𝜆

2. new theoretical predictions using our OPE calculation for the non-local FFs ℋ𝜆 at 𝑞2 < 0, experimental 

data for 𝐵 → 𝐾(∗)𝐽/𝜓, and a unitarity bound

new approach ⎯ℋ𝜆 uncertainties can be systematically reduced with unitarity bound 

(more local form factors ℱ𝜆 calculations, saturating the unitarity bound…)

3. new and precise SM predictions for observables in 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ− decays

coherent deviations between SM and data in 𝐵 → 𝐾(∗)ℓ+ℓ− and 𝐵𝑠 → 𝜙ℓ+ℓ− decays

17



Thank you!



Backup slides



we obtain good fits, agreement between the three fits

substantial tension w.r.t. SM (in agreement with the literature)

pulls (𝑝 value of the SM hypothesis):

• 5.7𝜎 for 𝐵 → 𝐾𝜇+𝜇− + 𝐵𝑠 → 𝜇+𝜇−

• 2.7𝜎 for 𝐵 → 𝐾∗𝜇+𝜇−

• 2.6𝜎 for 𝐵𝑠 → 𝜙𝜇+𝜇−

local FFs ℱ𝜆 main uncertainties

present theory predictions for 

non-local FFs ℋ𝜆 cannot explain this tension

Global fit to 𝑏 → 𝑠𝜇+𝜇− (results) 18



Missing something? 19

Ciuchini et al. 2022 (also way before) claim that 𝐵 → ഥ𝐷𝐷𝑠 → 𝐾 ∗ ℓ+ℓ− rescattering might have 

a sizable contribution 𝑂(20%)

is a mesonic estimate the best way to go? (many states contributing, interferences even 

harder to compute)

partonic calculation doesn’t yield large contribution (LP OPE and NLO 𝛼𝑠)

ℋ𝜆 𝑞2 = 𝐶𝜆(𝑞
2)ℱ𝜆 𝑞2 + ሚ𝐶𝜆(𝑞

2)𝒱𝜆 𝑞2 +⋯

𝐶𝜆 is complex valued for any 𝑞2 value due to branch cut in 𝑝2 = 𝑀𝐵
2 as expected

large duality violations? large NLP OPE or 𝛼𝑠
2 corrections? spectator scattering? 

[Asatrian/Greub/Virto 2019]
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