

Experimental status of charm decays

Liang Sun
Wuhan University

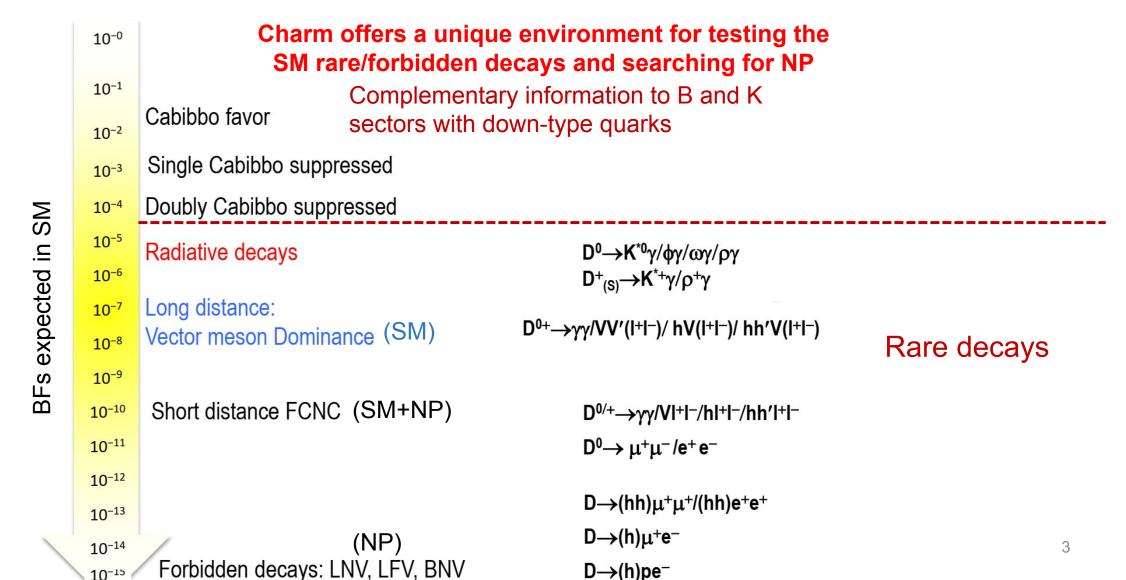
Outline

- Overview of rare charm decays
- Recent results on searches of:

•
$$\Lambda_c^+ \rightarrow \Sigma^+ \gamma$$
 and $\Xi_c^0 \rightarrow \Xi^0 \gamma$

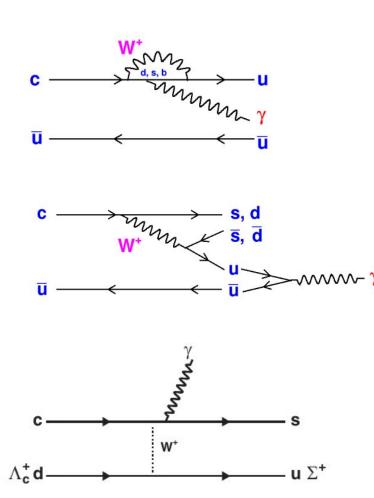
•
$$\Lambda_c^+ \rightarrow p \gamma'$$

•
$$D^0 \rightarrow \mu^+ \mu^-$$

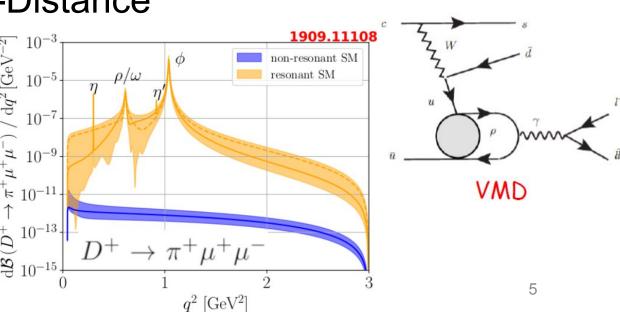

•
$$D^{*0} \to \mu^+ \mu^-$$

•
$$D^+ \rightarrow n(\overline{n})e^+$$

- Prospects
- Summary



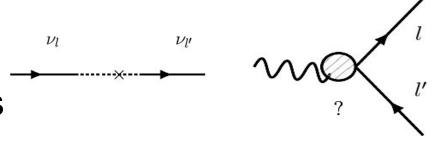
Summary of charm decays

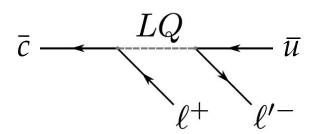

Weak radiative decays

- Short-Distance contribution from EM penguin highly suppressed
- Dominated by Long-Distance contributions, putting expected BFs up to 10⁻⁴
- Already observed decays with BF ~10⁻⁵—10⁻⁴
 - $D^0 \to \phi \gamma$, $D^0 \to \rho^0 \gamma$, and $D^0 \to \overline{K}^*(892)^0 \gamma$
- A test for QCD based calculations for LD effects
- First weak radiative decay of a bottom baryon, $\Lambda_b^0 \rightarrow \Lambda^0 \gamma$ already observed in 2019 [LHCb, PRL 123, 031801 (2019)]
- No such measurement existed for charmed baryons by mid 2022

Flavor Changing Neutral Currents

- Forbidden at tree level in SM, only allowed in loop and box diagrams
 - Strongly suppressed due to GIM cancellation:
 - BF ~⊘(10⁻⁹)
- $D \to X\ell^+\ell^-$ dominated by Long-Distance contributions
 - Vector Meson dominance (VMD)
 - BF ~ (10⁻⁶)

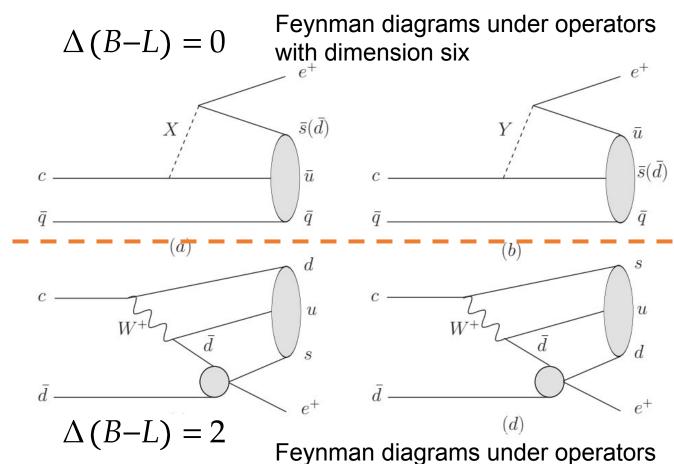



box diagram

penguin diagram

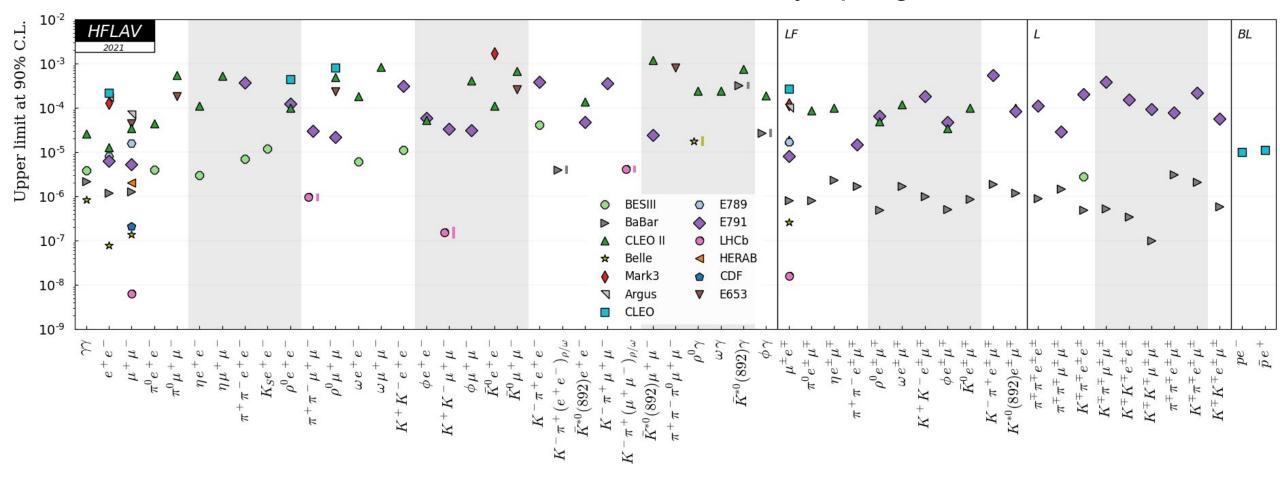
Lepton Flavor Violation


- LFV exists in neutrino oscillation
- Observation of charged LFV (cLFV) decays will be a clear sign for NP
- Lepton flavor non-universality closely related to cLFV
 - See, e.g. the talk by S. Schmitt on Tuesday
- BSM models (lepto-quark, Z', etc.) may induce cLFV and enhance BF up to ⊕(10⁻⁵)

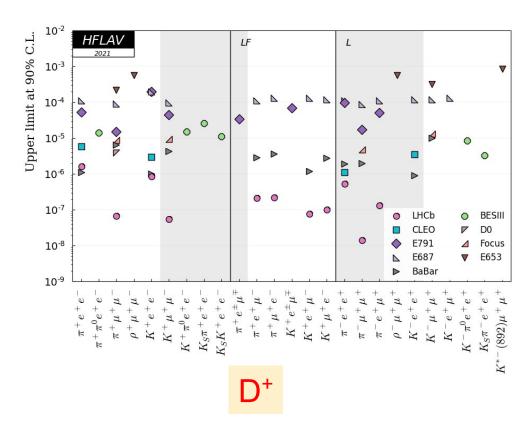

Lepton Number Violation

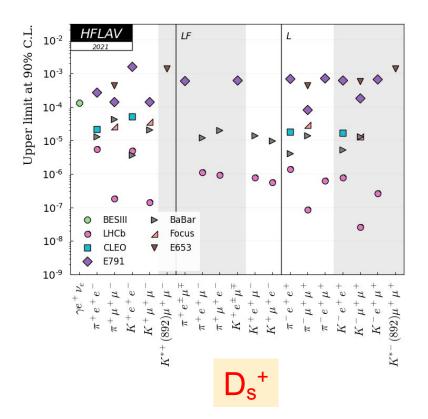
- Lepton Number Violation ($\Delta L \neq 0$) is forbidden in SM
- Neutrino oscillation $\rightarrow m_{\nu} \neq 0 \rightarrow$ New Physics needed to explain mass origin
- Nature of neutrino: Dirac or Majorana ($\nu_{\rm m}$)?
- Majorana neutrino can lead to $\Delta L = 2$ LNV processes
- LNV is introduced in many NP models:
 - 4th quark generation, SO(10) SUSY GUT, exotic Higgs, etc.
- LNV processes have been widely searched for in τ , K, D, and B decays

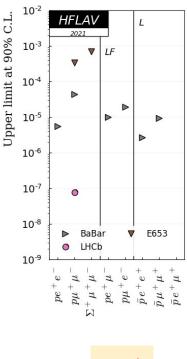
Baryon Number Violation


- Excess of baryons over antibaryons in the Universe
 → BNV processes exist
- BNV is allowed in GUTs and some SM extensions
 - Accompanied by LNV
- BFs of $D \rightarrow B\ell$, $B = \Lambda, \Sigma, p, n$ expected to be no more than $O(10^{-29})$ [PRD 72, 095001 (2005)]

with dimension seven

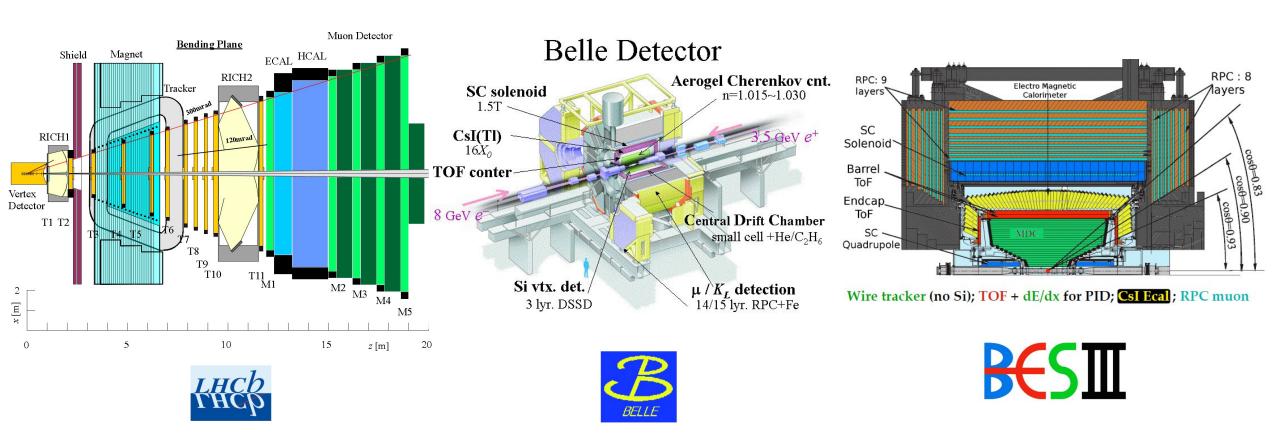

Results on rare charm decays (D⁰)


By Spring 2021



Results on rare charm decays $(D_{(s)}^+, \Lambda_c^+)$

By Spring 2021

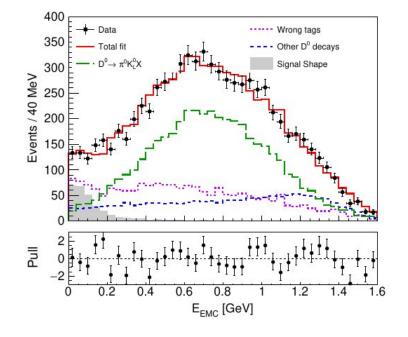


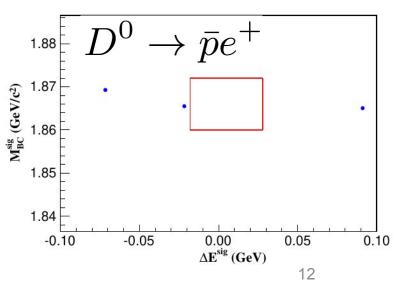
Still a lot of unexplored decay channels

Major experiments for charm physics

- Both using 2.93 fb⁻¹ ψ(3770) data
- First search of D decaying into $\nu \bar{\nu}$ final state yields:

$$B(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \times 10^{-4} @ 90\% CL$$

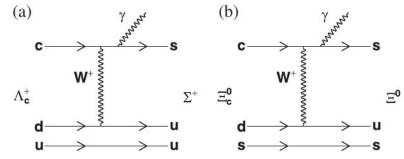

 With flavor of D determined from tag side, upper limits @ 90% CL are set:

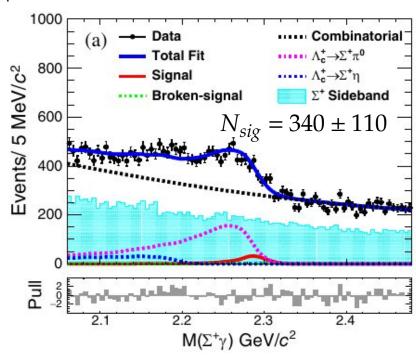

$$\mathcal{B}_{D^0 \to \bar{p}e^+} < 1.2 \times 10^{-6}$$

$$\mathcal{B}_{D^0 \to pe^-} < 2.2 \times 10^{-6}$$

Both results already presented during FPCP2022

PRD 105 (2022) L071102 PRD 105 (2022) 032006



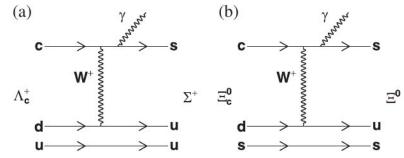


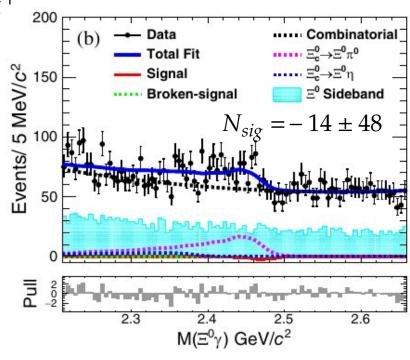
$$\Lambda_c^+ \rightarrow \Sigma^+ \gamma$$
 and $\Xi_c^0 \rightarrow \Xi^0 \gamma$

- Using 980 fb⁻¹ data collected at or near $\Upsilon(nS)$
- Using normalization channels $\Lambda_c^+ \to pK^-\pi^+$ and $\Xi_c^0 \to \Xi^-\pi^+$
- Requiring $\Sigma^+ \to p\pi^0$, $\Xi^{0,-} \to \Lambda(\to p\pi^-)\pi^{0,-}$
- Isolated photon with $E(\gamma) > 0.65$ (0.8) GeV in the barrel (endcap) of ECL
- The peaking backgrounds of $\Lambda_c^0 \to \Sigma^0 \pi^0(\eta)$ are estimated from simulation and BFs from PDG
- No evidences for signals found, upper limits @ 90% CL are set:

$$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \gamma) < 2.6 \times 10^{-4}$$

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \gamma) < 1.8 \times 10^{-4}$


First searches of weak radiative decays of charm baryons

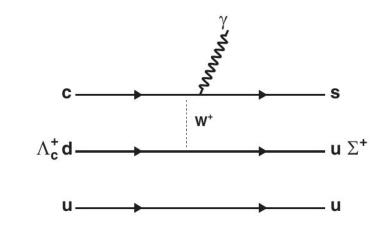


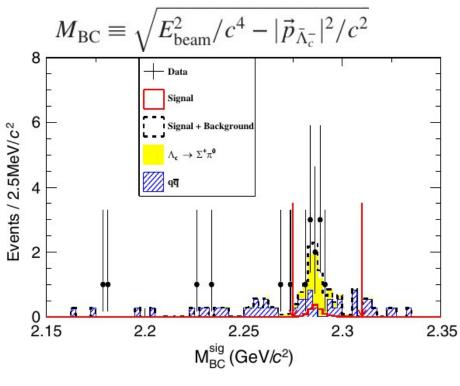
$$\Lambda_c^+ \rightarrow \Sigma^+ \gamma$$
 and $\Xi_c^0 \rightarrow \Xi^0 \gamma$

- Using 980 fb⁻¹ data collected at or near $\Upsilon(nS)$
- Using normalization channels $\Lambda_c^+ \to pK^-\pi^+$ and $\Xi_c^0 \to \Xi^-\pi^+$
- Requiring $\Sigma^+ \to p\pi^0$, $\Xi^{0,-} \to \Lambda(\to p\pi^-)\pi^{0,-}$
- Isolated photon with $E(\gamma) > 0.65~(0.8)$ GeV in the barrel (endcap) of ECL
- The peaking backgrounds of $\Xi_c^0 \to \Xi^0 \pi^0(\eta)$ are estimated based on dedicated data samples
- No evidences for signals found, upper limits @ 90% CL are set:

$$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \gamma) < 2.6 \times 10^{-4}$$

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \gamma) < 1.8 \times 10^{-4}$

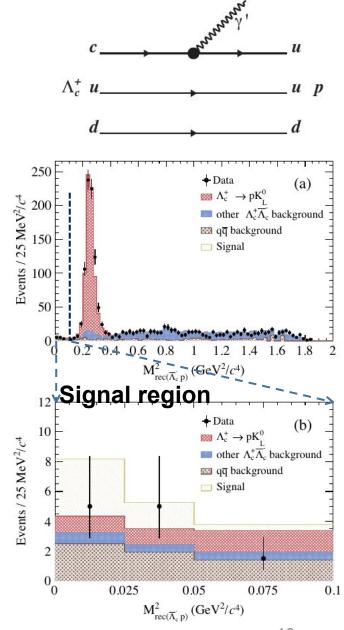

First searches of weak radiative decays of charm baryons



$$\Lambda_c^+ \rightarrow \Sigma^+ \gamma$$

- Using 4.5 fb⁻¹ e⁺e⁻ data at seven energy points between $\sqrt{s} = 4.600 4.699$ GeV
- Fully reconstruct a $\overline{\Lambda}_c^-$ at tag (ST) side
- Requiring $\Sigma^+ \rightarrow p\pi^0$
- Isolated photon with $E(\gamma) > 0.6$ GeV
- Background contributions estimated from simulation & known $\Lambda_c^+ \to \Sigma^+ \pi^0$ BF
- No significant signal found, upper limit @ 90% CL is set:

$$\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \gamma) < 4.4 \times 10^{-4}$$

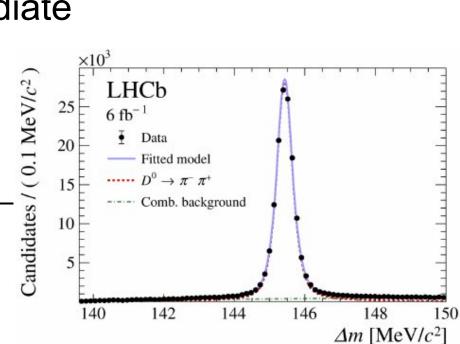


$$\Lambda_c^+ \to p \gamma'$$

- FCNC process of $c \to u$ with the emission of a massless dark photon expected in some BSM models with BF up to 10^{-5}
- Using 4.5 fb⁻¹ e⁺e⁻ data at seven energy points between $\sqrt{s} = 4.600 4.699$ GeV
- Fully reconstruct a $\overline{\Lambda}_c^-$ at tag (ST) side
- The γ' signal is reconstructed from the recoil mass against $\overline{\Lambda}_c^-$ and p (missing part)
- Background contributions estimated from simulation & known $\Lambda_c^+\!\!\to\!p K_{_T}^0$ BF
- The decay BF is determined from $\mathcal{B}(\Lambda_c^+ \to p \gamma') = \frac{N_{\rm obs} N_{\rm bkg}}{\sum_{ij} N_{ij}^{\rm ST} \cdot (\epsilon_{ij}^{\rm DT}/\epsilon_{ij}^{\rm ST})}$
- No significant signal found, upper limit is set:

$$\mathcal{B}(\Lambda_c^+ \to p \gamma') < 8.0 \times 10^{-5}$$
 at 90% C.L.

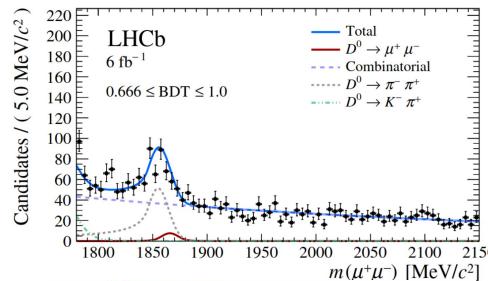
First search in the charmed baryon sector!

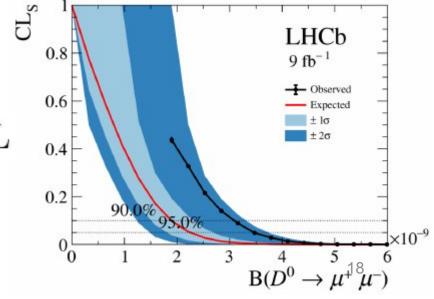

Search for $D^0 \rightarrow \mu^+ \mu^-$

• Short-distance contribution from $c \to u\ell\ell$ (FCNC) highly suppressed: Br~10⁻¹⁸

state: $Br < 10^{-13}$

- Dataset: full Runs1+2 9 fb⁻¹
- D^0 candidates from $D^{*+} \rightarrow D^0 \pi^+$
- Normalization channels: $D^0 \rightarrow K^- \pi^+, \pi^+ \pi^-$
- BDT trained to suppress combinatorial backgrounds

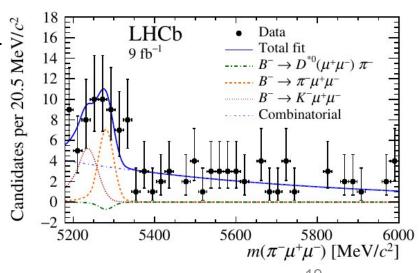



Search for $D^0 \rightarrow \mu^+ \mu^-$: results

- Peaking backgrounds from $D^0 \to h\pi$ are carefully calibrated using MC & control samples
 - Kπ: μμ mass sideband
 - $\pi\pi: D_{(s)}^+ \to \pi\pi\pi$ decays
- Final yield: $N(D^0 \rightarrow \mu\mu) = 79 \pm 45$
- Upper limits are set:

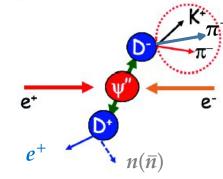
$$\mathcal{B}(D^0 \to \mu^- \mu^+) < 3.1(3.5) \times 10^{-9} \text{ at 90 (95)\% CL}$$

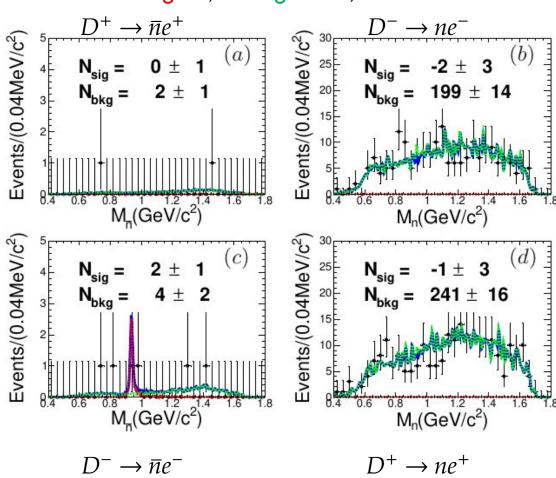
A factor of 2 improvement!



Search for $D^{*0} \rightarrow \mu^+ \mu^-$ in B decay

- * Leptonic D^{\star} decays offer a complementary approach to constraining Wilson coefficients
- Highly suppressed in SM: BF ~10⁻¹⁸
- Search in the decay chain of $B^- \to D^{*0} (\to \mu^+ \mu^-) \pi^-$
- Normalization channel: $B^- \to J/\psi (\to \mu^+ \mu^-) K^-$
- First search:

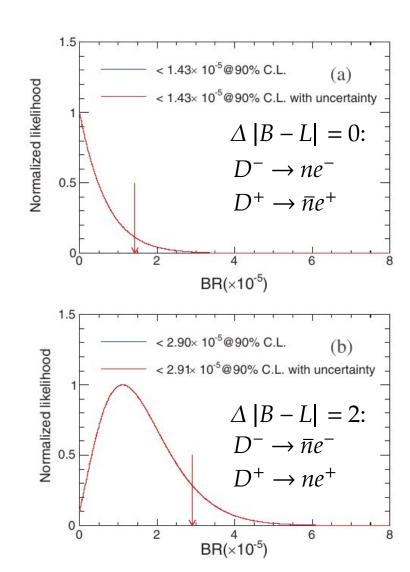

$$\mathcal{B}(D^{*0} \to \mu^+ \mu^-) < 2.6 \times 10^{-8} \text{ at } 90\% \text{ CL}$$


$$D^+ \rightarrow n(\bar{n})e^+$$

- Using 2.93 fb⁻¹ ψ(3770) data
- D^- tagged to suppress non- $D\overline{D}$ backgrounds
- $n(\bar{n})$ regarded as missing particle with momentum & mass inferred from beam condition
- GBDT based on EMC shower shape trained separately for $n(\bar{n})$ to suppress backgrounds such as $D \to \pi^0 Xev$ and $D \to K_L^0 Xev$
- Fit to $n(\bar{n})$ mass to extract signals

Double Tag method

Signal, Background, & Sum



$$D^+ \rightarrow n(\bar{n})e^+$$

- Using 2.93 fb⁻¹ ψ(3770) data
- No significant signal found, the UL limits are set:

$$B(D^{+(-)} \to \overline{n}(n) e^{+(-)}) < 1.43 \times 10^{-5} \quad \text{w/} \, \Delta |B - L| = 0$$

 $B(D^{+(-)} \to n(\overline{n}) e^{+(-)}) < 2.91 \times 10^{-5} \quad \text{w/} \, \Delta |B - L| = 2$

First searches!

BESIII prospects on FCNC searches

	10-6				10-6
Decay	Upper limit	Experiment	Year	Ref.	BESIII Expected
				** **	

$D^{\circ} \rightarrow \pi^{\circ} e^{-} e^{-}$	0.4	BESIII	2018	[35]	0.1	
$D^0 \to \eta e^+ e^-$	0.3	BESIII	2018	[35]	0.1	
$D^0 \to \omega e^+ e^-$	0.6	BESIII	2018	[35]	0.2	
$D^0 \to K_S^0 e^+ e^-$	1.2	BESIII	2018	[35]	0.5	
$D^0 \rightarrow \rho e^+ e^-$	124.0	E791	2001	[36]	0.5	
$D^0 \to \phi e^+ e^-$	59.0	E791	2001	[36]	0.5	
$D^0 \to \bar K^{*0} e^+ e^-$	47.0	E791	2001		0.5	
$D^0 \to \pi^+ \pi^- e^+ e^-$	0.7	BESIII	2018	20 fb ⁻¹	0.3	White Paper
$D^0 \rightarrow K^+ K^- e^+ e^-$	1.1	BESIII	2018	@ 3.773 GeV	0.4	CPC 44 (2020) 040001
$D^0 \to K^-\pi^+e^+e^-$	4.1	BESIII	2018	[35]	1.6	
$D^+ \to \pi^+ e^+ e^-$	1.1	BaBar	2011	[37]	0.12	
$D^+ \to K^+ e^+ e^-$	1.0	BaBar	2011	[37]	0.46	
$D^+\to\pi^+\pi^0e^+e^-$	1.4	BESIII	2018	[35]	0.5	
$D^+ \to \pi^+ K^0_S e^+ e^-$	2.6	BESIII	2018	[35]	1.0	
$D^+ \to K_S^0 K^+ e^+ e^-$	1.1	BESIII	2018	[35]	0.4	
$D^+ \to K^+ \pi^0 e^+ e^-$	1.5	BESIII	2018	[35]	0.6	
$D_s^+ \to \pi^+ e^+ e^-$	13.0	BaBar	201 6 f	b ⁻¹ @ 4.18 <i>G</i> eV		
$D_s^+ \to K^+ e^+ e^-$	3.7	BaBar	201	1971	1.7	

LHCb prospects

Mode	Upgrade $(50\mathrm{fb}^{-1})$	Upgrade II $(300\mathrm{fb}^{-1})$
$D^0 ightarrow \mu^+ \mu^-$	4.2×10^{-10}	$1.3 imes 10^{-10}$
$D^+ o \pi^+ \mu^+ \mu^-$	10^{-8}	3×10^{-9}
$D_s^+ o K^+ \mu^+ \mu^-$	10^{-8}	3×10^{-9}
$\Lambda o p\mu\mu$	$1.1 imes 10^{-8}$	4.4×10^{-9}
$D^0 o e\mu$	10^{-9}	4.1×10^{-10}

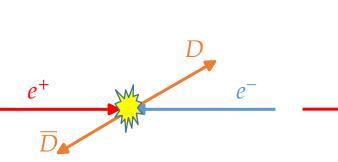
BF

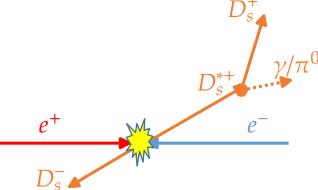
Mode	Upgrade $(50{ m fb}^{-1})$	Upgrade II $(300{ m fb}^{-1})$	
$D^+ \rightarrow \pi^+ \mu^+ \mu^-$	0.2%	0.08%	
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	1%	0.4%	
$D^0 ightarrow K^- \pi^+ \mu^+ \mu^-$	0.3%	0.13%	
$D^0 ightarrow K^+\pi^-\mu^+\mu^-$	12%	5%	
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%	

 A_{CP}

A. Contu, Towards the Ultimate Precision in Flavour Physics, Durham, United Kingdom, 2 - 4 Apr 2019

Summary


- Charm hadron decays offer unique opportunities for indirect NP searches
- LHCb / BESIII / BELLE(II) are major players in the field:
 - LHCb: Dominant role for charm decays to all-track final states due to overwhelming statistics
 - BESIII/BELLE(II): Advantages in reconstruction of neutrals $(\gamma/\pi^0/\eta/K_S^0/\Lambda/...)$ and invisible particles $(\nu/K_I^0/n/\text{DM}/...)$
- More results on the way: more decay modes currently under study & more data in coming years from existing experiments
 - Stay tuned!
- STCF is on the horizon! (See <u>CDR link</u> & the talk by Xiaocong on Thursday)


Backup Slides

Charm datasets @ BESIII

• Pairs of $D_{(s)}$ produced near threshold w/o additional hadrons

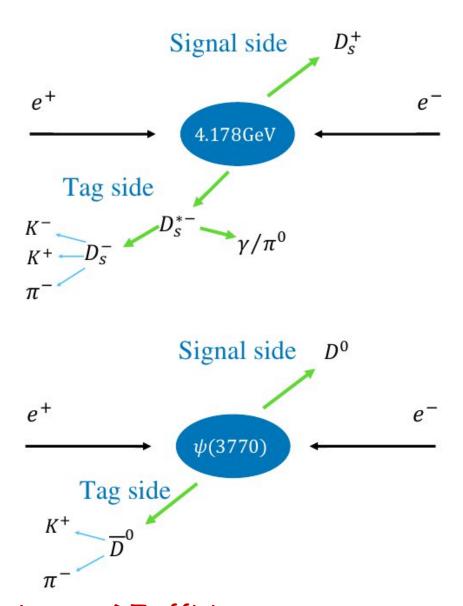
Data samples	\sqrt{s} (GeV)	Int. \mathcal{L} (fb ⁻¹)
$D\overline{D}$	3.773	2.93
$D_s\overline{D}_s^*$	4.178	3.19
$D_s\overline{D}_s^*$	4.189 - 4.226	3.18
$\Lambda_c^+ \overline{\Lambda}_c^-$	4.599	0.567
$\Lambda_c^+ \overline{\Lambda}_c^-$	4.612 - 4.698	3.8

- Advantages:
 - Low background level
 - Full event info, neutrino kinematics can be inferred
 - Absolute branching fraction measurement possible with one $D_{(s)}$ tagged
 - Superb EMC performance on e / γ / π^0

Double-Tag method

- Fully reconstructed \overline{D} at tag side (ST)
- Requiring signal decay at the other side (DT)

ST yields:


$$N_{D_{(s)}}^{\text{ST}} = 2 \times N_{D\overline{D}} \times B_{ST} \times \varepsilon_{ST}$$

DT yield:

$$N_{\mathrm{DT}}^{\mathrm{signal}} = 2 \times N_{D\overline{D}} \times B_{ST} \times B_{sig} \times \varepsilon_{ST,sig}$$

The signal branching fraction:

$$B_{\mathrm{sig}} = rac{N_{\mathrm{DT}}^{\mathrm{signal}}}{N_{D_{(s)}}^{\mathrm{ST}} imes arepsilon}$$

BESIII Λ_c^+ samples

\sqrt{s} (MeV)	$\mathcal{L}_{int} \; (pb^{-1})$
$\frac{3}{4599.53 \pm 0.07 \pm 0.74}$	$586.90 \pm 0.10 \pm 3.90$
$4611.84 \pm 0.12 \pm 0.28$	$103.45 \pm 0.05 \pm 0.64$
$4628.00 \pm 0.06 \pm 0.31$	$519.93 \pm 0.11 \pm 3.22$
$4640.67 \pm 0.06 \pm 0.36$	$548.15 \pm 0.12 \pm 3.40$
$4661.22 \pm 0.06 \pm 0.29$	$527.55 \pm 0.12 \pm 3.27$
$4681.84 \pm 0.08 \pm 0.29$	$1664.34 \pm 0.21 \pm 10.32$
$4698.57 \pm 0.10 \pm 0.32$	$534.40 \pm 0.12 \pm 3.31$

TABLE II. The ΔE requirement, ST yield, and ST detection efficiency (include the branching fractions of subleading decays) of $\bar{\Lambda}_c^- \to \bar{\Sigma}^- \gamma$ for each tag mode for the data sample at $\sqrt{s} = 4.600$ GeV. The uncertainty in the ST yield is statistical only.

Tag mode	$\Delta E \text{ (MeV)}$	$N_i^{ m ST}$	ϵ_i^{ST} (%)	
$\bar{p}K^{+}\pi^{-}$	(-34, 20)	6705 ± 90	51.0	
$\bar{p}K_S$	(-20, 20)	1268 ± 37	56.2	
$\bar{\Lambda}\pi^-$	(-20, 20)	741 ± 28	47.7	
$\bar{p}K^{+}\pi^{-}\pi^{0}$	(-30, 20)	1539 ± 57	15.4	
$\bar{p}K_S\pi^0$	(-30, 20)	485 ± 29	18.4	
$\bar{\Lambda}\pi^{-}\pi^{0}$	(-30, 20)	1382 ± 49	16.6	
$\bar{p}K_S\pi^+\pi^-$	(-20, 20)	512 ± 29	19.9	
$\bar{\Lambda}\pi^-\pi^+\pi^-$	(-20, 20)	646 ± 31	13.7	
$\bar{\Sigma}^0\pi^-$	(-20, 20)	404 ± 22	22.5	
$\bar{\Sigma}^-\pi^+\pi^-$	(-30, 20)	872 ± 38	18.1	