BSM in rare b decays

Admir Greljo

30.05.2023, FPCP Lyon

Confusing situation?!

I. The SM: Experimental success!

2. Yet, many open questions: Hierarchy problem Flavour puzzle Strong CP problem Charge quantization Dark matter Baryon asymmetry Neutrino masses Inflation Dark energy Quantum gravity

. . . .

Beyond the SM

Solid QFT principles

- SM fields & symmetries
- Scale separation $\Lambda_{\rm Q}\gg v_{\rm EW}$
- Higher-dimensional operators encode short-distance physics:

$$\mathcal{L} = \sum_{Q} \frac{C_Q}{\Lambda_Q^{[Q]-4}} Q$$

NP mass gap?

Reinforced by the current state of affairs

- I. No clear preferred BSM: Short-distance direction still the most compelling
- 2. SMEFT explains why SM works well: limited luminosity and energy so far
- 3. Experiments headed towards the precision era

- Challenge: A large number of independent parameters!
- 2499 dim[\mathcal{O}] = 6 $\Delta B = \Delta L = 0$ independent operators
- Why? **3 flavours**
- For a single generation, this would be 59

SMEFT $\mathcal{O}(1)$ terms		Lepton sector							
$(\dim -6, \Delta B = 0)$		MFV_L	$\mathrm{U}(3)_V$	$U(2)^2 \times U(1)$	$U(2)^{2}$	$\mathrm{U}(2)_V$	$U(1)^{6}$	$U(1)^{3}$	No symm.
Quark sector	MFV_Q	47	54	65	71	80	87	111	339
	$\mathrm{U}(2)^2 \times \mathrm{U}(3)_d$	82	93	105	115	128	132	168	450
	$\mathrm{U}(2)^3 \times \mathrm{U}(1)_{b_{\mathrm{R}}}$	96	107	121	128	144	150	186	480
	$U(2)^{3}$	110	123	135	147	162	164	206	512
	No symm.	1273	1334	1347	1407	1470	1425	1611	2499

AG, Thomsen, Palavric; <u>2203.09561</u> See also: AG, Palavric; <u>2305.08898</u>

Theory of weak decays

[See talk by Gambino]

Effective Field Theory

 $\langle \mathscr{H}_{eff} \rangle \propto \langle Q(\mu) \rangle C(\mu)$

long-distance contributions $E < \mu$

Hadronic matrix elements

2205.15373, 2205.13952. 2204.09091, 2108.05589. 1904.08731. 1902.09553, 1908.09398. 1912.09335. 1908.07011, 2002.00020, 2006.07287. 2101.12028, 2105.09330, 2106.12168. 2112.07685. 2206.11281.

. . .

Lattice QCD, http://flag.unibe.ch/2021/ Heavy quark effective theory, Heavy quark expansion, QCD factorisation, SCET, ChPT, QCD sum rules, Light-cone sum rules, ... short-distance contributions $E > \mu$

Wilson coefficients

[See talk by Capdevila: WET interpretation of $b \rightarrow s\ell\ell$]

The EFT at LHCb, Belle II, BESIII, ...

- Remarkably, short-distance NP enters weak decays through a handful of parameters (Wilson coefficients in the WET)
- It is important to take this opportunity, and exploit it maximally!
 More can be done...

```
[See the LHC EFT WG at the LPCC. LHCb is a part of it.]
```

Why?

- EFT interpretation of an analysis informs model builders about its importance relative to the global data!
- Construction of the global SMEFT likelihood an ideal format to report particle physics experiments if NP is short-distance.

Towards a global SMEFT likelihood

- **SMEFT** the low-energy limit of a generic microscopic new physics
- Correlated deviations expected global approach needed

https://eos.github.io van Dyk et al, 2111.15428

. . .

The SMEFT correlations

• How realistic is it to discover short-distance NP in a given observable given the global data?

[See Gudrun's talk: SMEFT bounds from charged lepton processes on $c \rightarrow u\nu\nu$]

An example on the next slide =>

 $[C_{lq}^{(1)}]_{st}^{(l)}(\bar{l}_l\gamma_{\mu}l_l)(\bar{q}_s\gamma^{\mu}q_t)$

 $[C_{lq}^{(1)}]^{(\ell)} \equiv [C_{lq}^{(1)}]^{(e)} = [C_{lq}^{(1)}]^{(\mu)}$

 $Q_{la}^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$

0903.1794

AG, Marzocca; 1704.09015

SMEFT: Systematic BSM

[See talk by Capdevila]

- The $b o s\ell\ell$ global fits prefer universal \mathscr{C}_9^-
- Based on the symmetries, looks like a QCD, but the size of the effect is (maybe) too big?

[See talk by Gubernari]

u,d

 \overline{S}

b

Q: LFU NP in $b \rightarrow s\ell\ell$?

"If it looks like a duck, walks like a duck and quacks like a duck, then it just may be a duck." leptoquark

Disclaimer: My exercises is academic — NP in P'_5 and co while $R_K = 1$ — there is still a room for LFUV, ...

Perturbative UV completion:

I. Tree-level models (leading operator)

LFU models: Z'

prst - flavor

LFU models: Z'

• The bounds from

Meson mixing

are too constraining

LFU models: Z'

• First of all, no single leptoquark representation gives C_0 only

Doršner, Fajfer, AG, Kamenik, Košnik; 1603.04993

• In addition, excluded by cLFV!

28

• Solution: Leptoquark as SU(2) flavor multiplet

Mass/Coupling degeneracy

$$\begin{aligned} \mathscr{L} \supset (D_{\mu}S^{\alpha})^{\dagger}(D^{\mu}S^{\alpha}) - m^{2}S^{\alpha\dagger}S^{\alpha} - (\lambda_{i}\bar{q}_{i}^{c}l_{\alpha}S^{\alpha} + \text{h.c.}) \\ \lambda_{i} &= \lambda \left(\kappa V_{td}, \kappa V_{ts}, 1\right) \end{aligned}$$

 $2q2\ell$ at tree level 4q and 4ℓ loop suppressed

Perturbative UV completion:

I. Tree-level models (but subleading operator)

Perturbative UV completion:

I. Loop-level (large RGE effects)

NP:
$$U_1$$
 vector leptoquark

 $\Delta C_9^{\text{eff}}(0) \approx -0.3.$ Aebischer et al, 2210.13422v2

Perturbative UV completion:

- I. Loop-level
 - NP: Box diagrams, again LFV, lower scale, direct searches, ...

Thank you for your attention

The WET analysis

ullet WET at the b scale

AG, Salko, Smolkovic, Stangl; <u>2212.10497</u>

$$\mathcal{H}_{\rm eff} = \mathcal{H}_{\rm eff}^{\rm SM} - \frac{4G_F}{\sqrt{2}} \frac{e^2}{16\pi^2} \sum_{q=s,d} \sum_{\ell=e,\mu} \sum_{i=9,10,S,P} V_{tb} V_{tq}^* (C_i^{bq\ell\ell} O_i^{bq\ell\ell} + C_i'^{bq\ell\ell} O_i'^{bq\ell\ell}) + \text{h.c.} \,.$$

• Operators:

$$\begin{aligned} O_9^{bq\ell\ell} &= (\bar{q}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell) \,, \\ O_{10}^{bq\ell\ell} &= (\bar{q}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell) \,, \\ O_S^{bq\ell\ell} &= m_b(\bar{q}P_R b)(\bar{\ell}\ell) \,, \\ O_P^{bq\ell\ell} &= m_b(\bar{q}P_R b)(\bar{\ell}\gamma_5 \ell) \,, \end{aligned}$$

$$\begin{aligned} O_{9}^{\prime bq\ell\ell} &= (\bar{q}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell) \,, \\ O_{10}^{\prime bq\ell\ell} &= (\bar{q}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \,, \\ O_{S}^{\prime bq\ell\ell} &= m_{b}(\bar{q}P_{L}b)(\bar{\ell}\ell) \,, \\ O_{P}^{\prime bq\ell\ell} &= m_{b}(\bar{q}P_{L}b)(\bar{\ell}\gamma_{5}\ell) \,. \end{aligned}$$

WET fit: ID

AG, Salko, Smolkovic, Stangl; <u>2212.10497</u>

	$b \rightarrow s \mu \mu$		LFU, $B_s \to \mu \mu$		all rare B de	ecays
Wilson coefficient	best fit	pull	best fit	pull	best fit	pull
$C_9^{bs\mu\mu}$	$-0.77^{+0.21}_{-0.21}$	3.6σ	$-0.21\substack{+0.17\\-0.19}$	1.2σ	$-0.42\substack{+0.13\\-0.14}$	3.2σ
$C_9^{\prime b s \mu \mu}$	$+0.29\substack{+0.25\\-0.25}$	1.2σ	$-0.22\substack{+0.17\\-0.18}$	1.3σ	$-0.04\substack{+0.13\\-0.13}$	0.3σ
$C_{10}^{bs\mu\mu}$	$+0.33\substack{+0.24\\-0.24}$	1.3σ	$+0.16\substack{+0.12\\-0.11}$	1.4σ	$+0.17\substack{+0.10 \\ -0.10}$	1.8σ
$C_{10}^{\prime bs\mu\mu}$	$-0.05\substack{+0.16\\-0.15}$	0.3σ	$+0.04\substack{+0.11\\-0.12}$	0.3σ	$+0.02\substack{+0.09\\-0.09}$	0.2σ
$C_9^{bs\mu\mu}=C_{10}^{bs\mu\mu}$	$-0.27\substack{+0.15\\-0.15}$	1.7σ	$+0.17\substack{+0.18 \\ -0.18}$	1.0σ	$-0.08\substack{+0.11\\-0.11}$	0.7σ
$C_9^{bs\mu\mu}=-C_{10}^{bs\mu\mu}$	$-0.53\substack{+0.13\\-0.13}$	3.6σ	$-0.10\substack{+0.07\\-0.07}$	1.4σ	$-0.17\substack{+0.06\\-0.06}$	2.7σ
$C_9^{bs\ell\ell}$	$-0.77\substack{+0.21\\-0.21}$	3.6σ			$-0.78\substack{+0.21\\-0.21}$	3.7σ
$C_9^{\prime bs\ell\ell}$	$+0.29\substack{+0.25\\-0.25}$	1.2σ			$+0.30\substack{+0.25\\-0.25}$	1.2σ
$C_{10}^{bs\ell\ell}$	$+0.33\substack{+0.24\\-0.24}$	1.3σ	$+0.21\substack{+0.19\\-0.19}$	1.1σ	$+0.23\substack{+0.15\\-0.15}$	1.6σ
$C_{10}^{\prime bs\ell\ell}$	$-0.05\substack{+0.16\\-0.15}$	0.3σ	$-0.21\substack{+0.19\\-0.19}$	1.1σ	$-0.08\substack{+0.11\\-0.12}$	0.7σ
$C_9^{bs\ell\ell}=C_{10}^{bs\ell\ell}$	$-0.27\substack{+0.15\\-0.15}$	1.7σ	$+0.21\substack{+0.19\\-0.19}$	1.1σ	$-0.09\substack{+0.11\\-0.11}$	0.8σ
$C_9^{bs\ell\ell}=-C_{10}^{bs\ell\ell}$	$-0.53\substack{+0.13\\-0.13}$	3.6σ	$-0.21\substack{+0.19\\-0.19}$	1.1σ	$-0.40\substack{+0.11\\-0.11}$	3.5σ
$\left(C_S^{bs\mu\mu} = -C_P^{bs\mu\mu}\right) \times \text{GeV}$			$-0.002\substack{+0.001\\-0.002}$	1.1σ	$-0.001\substack{+0.001\\-0.001}$	0.7σ
$\left(C_S^{\prime b s \mu \mu} = C_P^{\prime b s \mu \mu}\right) \times \text{GeV}$			$-0.002\substack{+0.001\\-0.002}$	1.1σ	$-0.001\substack{+0.001\\-0.001}$	0.7σ

LFU

WET fit: 2D μ

WET fit: LFU vs LFUV

WET fit: $b \rightarrow d$ **versus** $b \rightarrow s$

AG, Salko, Smolkovic, Stangl; 2212.10497

LFU models for $b \rightarrow s\ell\ell$

AG, Salko, Smolkovic, Stangl; 2212.10497

NP in the Drell-Yan Tails

Drell-Yan in the SMEFT

DY dim-6 ψ^4		Lepton sector					AG, Palavric; wip
$\mathcal{O}(1) ext{ terms}$		MFV_L	$U(2)^2 \times U(1)_{\tau_R}$	$U(2)^2$	$U(1)^{6}$	$U(1)^{3}$	No symmetry
Quark sector	MFV_Q	7	14	14	21	21	63
	$U(2)_q \times U(2)_u \times U(3)_d$	10	20	20	30	30	90
	$U(2)^3 \times U(1)_{b_R}$	12	24	24	36	36	108
	$U(2)^{3}$	12	24	26	36	42	126
	No symmetry	53	106	148	159	285	855

Table 3: Flavor counting of the dimension-6 operators of the type ψ^4 which contribute to Drell-Yan scattering.

SMEFT fit: ID

4F SMEFT operators with arbitrary flavor

$Q_{lq}^{\left(1 ight)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$
$Q_{lq}^{(ar{3})}$	$(ar{l}_p\gamma_\mu\sigma^i l_r)(ar{q}_s\gamma^\mu\sigma^i q_t)$
Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$
Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$
Q_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$
Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$
Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_{tj})$
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu u} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu u} u_t)$

Drell-Yan data used

Search	Search Ref.		Luminosity	
	[45]	$pp \rightarrow ee$	$139 { m ~fb^{-1}}$	
		$pp ightarrow \mu \mu$	$139 {\rm ~fb^{-1}}$	
CMS	[46]	$pp \rightarrow ee$	$137 \ \mathrm{fb}^{-1}$	
CMS		$pp ightarrow \mu \mu$	$140~{\rm fb}^{-1}$	
ATLAS	[47]	$pp \to e\nu$	$139 {\rm ~fb^{-1}}$	
		$pp ightarrow \mu u$	$139 \ \mathrm{fb}^{-1}$	
CMS	[48]	$pp \to e\nu$	$138 {\rm ~fb^{-1}}$	
		$pp \rightarrow \mu \nu$	$138 {\rm ~fb^{-1}}$	

Table 4: The 2σ bounds on different flavor structures of single Wilson coefficients at $\Lambda = 1$ TeV. See Sec. 5.1 for details.

		Drell-Y	an tails	B decays		
Operator	Flavor	NC	$\mathbf{C}\mathbf{C}$	$b o q \ell \ell$	b ightarrow q u u	
	1113	[-0.068, 0.068]	-	[-0.005, 0.002]	[-0.035, 0.039]	
$o^{(1)}$	2213	[-0.031, 0.032]	-	$[-4.96, 0.78] \times 10^{-4}$	[-0.035, 0.039]	
O_{lq}	1123	[-0.145, 0.152]	-	$[-4.26, 0.98] \times 10^{-4}$	[-0.038, 0.017]	
	2223	[-0.066, 0.071]	-	$[7.71, 51.86] \times 10^{-5}$	[-0.038, 0.017]	
	1113	[-0.068, 0.068]	[-0.017, 0.017]	[-0.005, 0.002]	[-0.037, 0.033]	
$o^{(3)}$	2213	[-0.032, 0.031]	[-0.029, 0.029]	$[-4.85, 0.7] \times 10^{-4}$	[-0.037, 0.033]	
O_{lq}	1123	[-0.152, 0.145]	[-0.054, 0.051]	$[-4.26, 0.98] \times 10^{-4}$	[-0.015, 0.035]	
	2223	[-0.071, 0.066]	[-0.089, 0.089]	$[7.71, 51.86] \times 10^{-5}$	[-0.015, 0.035]	
	1113	[-0.068, 0.068]	-	[-0.005, 0.002]	[-0.038, 0.038]	
0	2213	[-0.032, 0.032]	-	$[-2.79, 2.43] \times 10^{-4}$	[-0.038, 0.038]	
O_{ld}	1123	[-0.149, 0.149]	-	$[-4.04, 1.09] \times 10^{-4}$	[-0.007, 0.023]	
	2223	[-0.069, 0.069]	-	$[-1.68, 2.14] \times 10^{-4}$	[-0.007, 0.023]	
	1311	[-0.068, 0.068]	-	[-0.003, 0.004]	-	
Ø	1322	[-0.032, 0.032]	-	$[-3.35, 7.56] \times 10^{-4}$	-	
O_{qe}	2311	[-0.148, 0.149]	-	[-0.003, 0.001]	-	
	2322	[-0.068, 0.069]	-	$[-2.39, 4.97] \times 10^{-4}$	-	
	1113	[-0.068, 0.068]	-	[-0.003, 0.004]	-	
0	2213	[-0.032, 0.032]	-	$[-7.03, 3.76] \times 10^{-4}$	-	
\mathcal{O}_{ed}	1123	[-0.149, 0.149]	-	[-0.002, 0.002]	-	
	2223	[-0.069, 0.069]	-	$[-4.05, 4.37] \times 10^{-4}$	-	
	1113	[-0.079, 0.079]	-	$[-1.19, 1.18] \times 10^{-4}$	-	
	1131	[-0.079, 0.079]	[-0.037, 0.037]	$[-1.18, 1.18] \times 10^{-4}$	-	
	2213	[-0.037, 0.037]	-	$[-3.48, 0.67] \times 10^{-5}$	-	
(2231	[-0.037, 0.037]	[-0.061, 0.061]	$[-3.49, 0.68] \times 10^{-5}$	-	
\mathcal{O}_{ledq}	1123	[-0.173, 0.173]	-	$[-1.78, 1.79] \times 10^{-4}$	-	
	1132	[-0.173, 0.173]	[-0.113, 0.113]	$[-1.77, 1.78] \times 10^{-4}$	-	
	2223	[-0.08, 0.08]	-	$[-6.82, 16.57] \times 10^{-6}$	-	
	2232	[-0.08, 0.08]	[-0.194, 0.194]	$[-6.8, 16.48] \times 10^{-6}$	-	

AG, Salko, Smolkovic, Stangl; 2212.10497

Example

Example:

$$\mathscr{L}_{NP}^{\Delta C=1} \approx \frac{\epsilon_V^{\ell\ell}}{(15 \,\mathrm{TeV})^2} \,(\bar{u}_R \gamma^\mu c_R) (\bar{\ell}_R \gamma^\mu \ell_R)$$

Systematic exploration of the low- p_T / high- p_T interplay

1609.07138, 1704.09015, 1811.07920, 1805.11402, 1912.00425, 2002.05684, 2008.07541, 2104.02723, 2111.04748, ...