neutrino oscillations the latest on...

Conference FPCP

May-June 2023 — Lyon, France

Anatael Cabrera

CNRS / Université de Paris-Saclay IJCLab @ Orsay LNCA @ Chooz

European Innovation Council

disclaimer...

this talk: general & news — "non-experts" [please ask]
 experimental view but not explaining all experiments

•this talk (reactor leaning) complementary to Sara Bolognesi's (accelerator leaning)

•skipping...

•absolute mass [Stephane Lavignac]

•ββ [Stefan Schoenert]

- •beyond 3 neutrinos [Julia Gehrlein] only a hint!!
- •short baseline [Mark Ross-Lonergan]
- •astrophysics [Juan Pablo Yanez Garza]

what we know...

neutrino rather unique in Standard Model... discoveries!

~50 years of neutrino oscillations...

huge experimental/theory effort [discovery⊕establishment ⇔ Nobel 2015]

modification of the Standard Model of Particle Physics

ingredients for **neutrino oscillations**...

6

diagrammatically...

CC (W[±]) sensitivity to neutrino oscillations while NC (flavour blinded) provide the total flux

univocal neutrino oscillation signature...

one of the most formidable spectral distorsion so far seen (KamLAND)

most used neutrino sources...

controlled & high resolution L/E

uncontrolled & poorer resolution L/E

status on neutrino oscillation knowledge...

Standard Model(3 families)

[leptons & quarks] & PMNS_{3×3}(θ₁₂,θ₂₃,θ₁₃) &

no conclusive sign of any extension so far!!

(inconsistencies vs uncertainties)

$\pm \Delta m^2 (\pm \Delta m^2_{23}) \& + \delta m^2 (\pm \Delta m^2_{12})$

must measure all parameters→characterise & test (i.e. over-constrain) Standard Model

	today				
	best kno	global			
θ12	3.0 %	sk⊕sno	2.3 %		
θ23	5.0 %	T2K⊕NOvA	2.0 %		
θιз	1.8 %	DYB&DC&RENO	I.5 %		
+δm²	2.5 %	KamLAND	2.3 %		
Δm²	3.0 %	T2K⊕NOvA DYB	1.3 %		
Mass Ordering	unknown	SK et al	NO @ ~3 σ		
CPV	unknown	T2K⊕NOvA	3/2π @ ≲ 2σ		
			(now)		

(reactor-beam)

JUNO \oplus DUNE \oplus HK will lead precision in the field \rightarrow Mass Ordering & CPV except θ_{13} !

ORCA \oplus PINGU \oplus IceCube complementary for Mass Ordering & Δ m² measure frequency (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

11

Normal/Inverted Mass Ordering

solar \approx SK \oplus SNO \oplus Borexino atmos \approx SK \oplus IceCube [ORCA \oplus PINGU] beam \approx T2K \oplus NOvA [HyperK \oplus DUNE] reactor \approx KamLAND \oplus Reactor- θ I3 [JUNO]

"solar" terms:

•θ₁₂: solar→<u>JUNO</u>

•δm²: KamLAND→<u>JUNO</u>

"atmospheric" terms:

- •θ₂₃: <u>beam</u>⊕atmos
- •Δm²: <u>reactor</u>⊕<u>beam</u>⊕atmos→<u>JUNO</u>
- Mass Ordering: all \rightarrow JUNO \oplus <u>DUNE</u>
- θ I 3 terms (key for CPV & Mass Ordering): • θ_{13} : Reactor- θ_{13} (DC \oplus DY B \oplus RENO)

CPV(ð) term: <u>beam</u> 🙆

5
_

					NuFIT 5.0 (2020)	
		Normal Ord	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 2.7)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
đ	$\sin^2 \theta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	
without SK atmospheric data	$\theta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
	$\sin^2 heta_{23}$	$0.570\substack{+0.018\\-0.024}$	$0.407 \rightarrow 0.618$	$0.575\substack{+0.017\\-0.021}$	$0.411 \rightarrow 0.621$	
	$ heta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$	
	$\sin^2 \theta_{13}$	$0.02221\substack{+0.00068\\-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02240\substack{+0.00062\\-0.00062}$	$0.02053 \rightarrow 0.02436$	
	$ heta_{13}/^{\circ}$	$8.57_{-0.12}^{+0.13}$	$8.20 \rightarrow 8.97$	$8.61_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$	
	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$	
		Normal Ord	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 7.1)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
ric data	$\sin^2 \theta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	
	$\theta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
	$\sin^2 heta_{23}$	$0.573\substack{+0.016\\-0.020}$	$0.415 \rightarrow 0.616$	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$	
sphe	$\theta_{23}/^{\circ}$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3^{+0.9}_{-1.1}$	$40.3 \rightarrow 51.8$	
SK atmo	$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238\substack{+0.00063\\-0.00062}$	$0.02052 \rightarrow 0.02428$	
	$\theta_{13}/^{\circ}$	$8.57^{+0.12}_{-0.12}$	$8.20 \rightarrow 8.93$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.96$	
with	$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498^{+0.028}_{-0.028}$	$-2.581 \rightarrow -2.414$	

JUNO precision (few months)..."

	Mass Ordering	$\left \Delta m_{32}^2\right $	$ \Delta m_{21}^2 $	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}$	\rightarrow reactor- θ 3
6 years of data	$3-4\sigma$	$\sim 0.18\%$	$\sim 0.30\%$	$\sim 0.5\%$	$\sim 14\%$	(input)
20 years of data	5σ	$\sim 0.15\%$	$\sim 0.25\%$	$\sim 0.4\%$	$\sim 7\%$	

□ complementarity & synergies for ultimate precision...

by 2030, θ12-θ13 plane fully dominated by <u>reactor experiments</u> — cross-check JUNO!

scomplementarity & synergies for ultimate precision...

by 2030, θ23 octant extremely hard (depending on θ23)→ improving θ13?

what we do not know...

SMV . : knowns & unknowns...

Weak Flavour Neutrinos (3): **v(e)**, **v(µ)**, **v(t)** — <u>observed</u> 3! (same as quarks)

Mass Neutrinos (3): v(1), v(2), v(3) — <u>assumed</u> ≥3! [tight <u>cosmology constraints</u>]

17

consider full matrix structure (not just composition)

why shape?

U_{3x3} unitary?

large mixing but a small one!
largest CP-violation (SM)
any symmetry behind? [or Nature's caprice?]

[assumed!!, not demonstrated]

(BSM) any relation to CKM?

CP-violation (unknown)...

PMNS

20

J(PMNS)≈3.33±0.06x10⁻²

J(CKM)≈3.18±0.15x10-5

CKM & PMNS triangles (CPV)

much larger CPV potential in PMNS — good news! we need CPV in the Universe to exist!

beam eactor for CP-Violation...

CPV phase vs θI3

[constrained by reactor]

CPV phase vs θ23

[octant ambiguity]

CPV phase vs (Atmospheric) Mass Ordering [T2K blinded]

Mass Ordering (unknown)...

Synergies and prospects for early resolution of the neutrino mass ordering

Anatael Cabrera, Yang Han, ... Hongzhao Yu + Show authors

Scientific Reports 12, Article number: 5393 (2022) Cite this article

Today's global analysis: NMO@~3 σ •T2K Appearance (≤ 2024) — no! [$\leq 1\sigma$] •NovA Appearance (≤ 2026) — unlikely! [$\leq 4\sigma$] •JUNO ($\geq 2024 + 6$ years) — no! [$\leq 3\sigma$] \Rightarrow T2K + NOvA + JUNO (≤ 6 year) = unlikely! (just adding)

⇒ T2K ⊕ NOvA ⊕ JUNO (≤6year) = yes! (synergies: appearance⊕disappearance)

$\sim 5\sigma$ before 2030?

JUNO \bigoplus LB ν B-Disappearance [$\delta(\Delta m^2)$ =0.75%] \bigoplus LB ν B-Appearance

conclusions so far...

•stunning evolution of the field (worldwide & international)...
 ⇒ several discoveries (Nobel prizes) ⇒ modify the Standard Model

 historical effort construction & underground excavations — ongoing LHC-like investments — even FNAL "goes neutrino"!!
 → neutrino oscillations controlled to ≤ 1% by early 2030 — all parameters known!

•standard oscillations to become a background → what's the new signal?

more discoveries?

[redundancy \oplus highest precision \oplus test fundamental symmetries]

new flagship v experiments...

enough? (permille precision)

2 accelerator experiments HyperK & DUNE→ redundancy

I reactor experiment JUNO→ no cross-check!

Kamiokand

SUPERCHOOZ

exploring the opportunity...

Anatael Cabrera (CNRS-IN2P3) — IJCLab / Université Paris-Saclay (Orsay)

CNrs

neutrinos oscillation : standard picture (SM) synergies with Hyperk-JUNO-DUNE!

neutrinos to probe BSM --> discoveries? beyond today's paradigm!

SuperChooz rationale...

SuperChooz experimental setup...

the Ardennes mountains European **UK Research** Innovation and Innovation Council AM-OTech project [EIC-UKRI] **CLOUD** experiment CNIS 1 Dec 2022 Chooz-B: Reactor Cores Chooz-A: Cavern Reactor Core Ultra Near Detectors @ Chooz-B: LiquidO technology •Mass: ≤ 5 tons • Overburden: ≤5m the Meuse river •Baseline: ≤30m Super Far Detector @ Chooz-A LiquidO technology **CN**rs •Mass: ~10,000 tons

•Overburden: ≤100m

•Baseline: ~1 km

HEP-European Physics Society (July 2019 @ Ghent Belgium)

EP Seminar

The SuperChooz Experiment: Unveiling the Opportunity

- by Dr Anatael CABRERA (IJCLab IN2P3/CNRS)
- Tuesday 29 Nov 2022, 11:00 → 12:00 Europe/Zurich
- 222/R-001 (CERN)

ps://indico.cern.ch/event/1215214/

CNrs

ittps://zenodo.org/record/7504162

https://indico.cern.ch/event/577856/contributions/342160

https://liquido.ijclab.in2p3.fr/

exploring since 2018...

Дякую...thanks...merci...고맙습니다...고맙습니다...ありがとう...ありがとう...danke...obrigado...cпасибі...grazie...谢谢...hvala...gracias...リンニ..

questions..?

anatael@in2p3.fr

status on neutrino oscillation knowledge...

SuperChooz is designed cover the full **SM picture** (3 families) [synergy]

32

SuperChooz explore the **SM**'s <u>consistency/completeness</u> \rightarrow **BSM discovery**?

SuperChooz = SC							
		today		≥2030			
	best knowledge		global	foreseen	dominant	source	
θ12	3.0 %	SK⊕SNO	2.3 %	≤0.5%	JUNO ®SC	reactor⊕solar	
θ23	5.0 %	NOvA+T2K	2.0 %	≲ .0%?	DUNE⊕HK [SC]	beam (octant)	
θιз	1.8 %	DYB+DC+RENO	1.5 %	≤0.5 %	SC	reactor	
+δm²	2.5 %	KamLAND	2.3 %	<0.5%	JUNO⊕ SC	reactor⊕solar	
Δm ²	3.0 %	T2K+NOvA &	1.3 %	<0.5%	JUNO⊕DUNE⊕HK⊕ SC	reactor⊕beam	
Mass Ordering	unknown	SK et al	NMO @ <u>≤</u> 3σ	@5σ	JUNO⊕DUNE⊕HK	reactor⊕beam	
СР	violation?	T2K+NOvA	3/2π @ <mark>≤2σ</mark>	@5σ?	DUNE⊕HK [<mark>SC</mark>]	beam driven	
СРТ	violation?			< %?	SC	reactor⊕solar	
Unitarity	violation?			< %?	SC	reactor⊕solar	
Baryon#	violation?				JUNO⊕DUNE⊕HK⊕ SC		

reactor⊕solar main channels of SC, but low energy atmospherics under study...

PREPARED FOR SUBMISSION TO JHEP

IFT-UAM/CSIC-112, YITP-SB-2020-21

The fate of hints: updated global analysis of three-flavor neutrino oscillations

Ivan Esteban,^{*a*} M. C. Gonzalez-Garcia,^{*a,b,c*} Michele Maltoni,^{*d*} Thomas Schwetz,^{*e*} Albert Zhou^{*e*}

- ^aDepartament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
- ^bInstitució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.
- ^cC.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA
- ^dInstituto de Física Teórica UAM/CSIC, Calle de Nicolás Cabrera 13–15, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
- e Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe, Germany

E-mail: ivan.esteban@fqa.ub.edu,

maria.gonzalez-garcia@stonybrook.edu, michele.maltoni@csic.es, schwetz@kit.edu, albert.zhou@kit.edu

ABSTRACT: Our herein described combined analysis of the latest neutrino oscillation data presented at the Neutrino2020 conference shows that previous hints for the neutrino mass ordering have significantly decreased, and normal ordering (NO) is favored only at the 1.6 σ level. Combined with the χ^2 map provided by Super-Kamiokande for their atmospheric neutrino data analysis the hint for NO is at 2.7 σ . The CP conserving value $\delta_{\rm CP} = 180^{\circ}$ is within 0.6 σ of the global best fit point. Only if we restrict to inverted mass ordering, CP violation is favored at the $\sim 3\sigma$ level. We discuss the origin of these results – which are driven by the new data from the T2K and NOvA long-baseline experiments–, and the relevance of the LBL-reactor oscillation frequency complementarity. The previous 2.2 σ tension in Δm_{21}^2 preferred by KamLAND and solar experiments is also reduced to the 1.1 σ level after the inclusion of the latest Super-Kamiokande solar neutrino results. Finally we present updated allowed ranges for the oscillation parameters and for the leptonic Jarlskog determinant from the global analysis.

KEYWORDS: neutrino oscillations, solar and atmospheric neutrinos

today's world data leads to...

NMO favoured to $\sim 2.7\sigma$ (2020)

Super-Kamiokande (most info so far)
I.6σ (NOvA⊕T2K & DC⊕DYB⊕RENO)
some fragility?

what are the leading experiments?

what's going to happen next?

NuFitv5.0: today's world knowledge — what about tomorrow?

today's NMO status...

33

synergy I (JUNO vs NOvA \oplus T2K): high precision disappearance Δm^{2}_{32} measurement

JUNO: unique vacuum oscillations (≥5σ!!!)

Δm² boosting is **blinded to matter-effect**

synergy II (NOvA vs T2K): MO⊕CPV complementary phase space discrimination

arXiv:2008.11280

Mass Ordering: JUNO&NOvA&T2K...

10

9

35

T2K data (2026) and NOvA data (2024) \rightarrow release most precise Δ m²₃₂

-5σ maybe even by ≥2026‼ (if lucky)

arXiv:2008.11280 **14** Vaccum Oscillation MO Sensitivity Evolution 12 Mass Ordering Significance $[\sigma]$ JUNO only 10 JUNO $\bigoplus \Delta m^2_{32_{LB\nu B}}(0.75\%)$ 8 6 4 2 $\frac{1}{2}$ Vacuum vs Matter 0 JUNO Timeline (years) discovery: physics BSM? first? MO @ ≥5σ possible (≥90% CL) — follow JUNO [2028]

time evolution... new physics?

36

Anatael Cabrera CNRS-IN2P3 / IJCLab (Orsay) - LNCA (Chooz) Laboratories

Mass Ordering: benefits from all...

many experiments with sensitivity...

now running (alphabetical)...

- •NOvA direct sensitivity
- **Reactor-** θ **I3** indirectly (via Δ m²)
- **SuperK** direct sensitivity
- •**T2K** indirect sensitivity (via $\Delta m^2 \& CPV$)
- ⇒ see impact and details in **NuFit5.0**, Bari, Valencia, Madrid **global analyses**

forthcoming (alphabetical)...

- **DUNE** direct sensitivity
- HyperK (atmospheric) direct sensitivity
- •JUNO direct sensitivity
- •ORCA direct sensitivity
- **PINGU** direct sensitivity
- •**T2HK** indirect sensitivity (via $\Delta m^2 \& CPV$)

very exciting field — including CPV measurement