New LCSR predictions for $\mathbf{b} \rightarrow \mathbf{s}$ hadronic form factors

Yann Monceaux - IP2I - 30/05/2023
In collaboration with Nazila Mahmoudi and Alexandre Carvunis

Motivation: B-anomalies status

$0 \rightarrow s 7 l$

Anomalies in 'clean' observables gone:
$>\mathrm{R}_{\mathrm{K}}$ and $\mathrm{R}_{\mathrm{K}^{*}}$ (LHCb 2022)
$\Rightarrow \mathrm{BR}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \mu \mu\right)(\mathrm{LHCb} 2021)$
Deviation in angular observables and Branching fractions at low q^{2} still standing

Theoretically challenging

Theoretical framework:

$b \longrightarrow s l l$ in the weak effective theory
At the scale $m_{b} \quad H_{e f f}=H_{e f f, s l}+H_{e f f, h a d}$

$\triangleright H_{e f f, h a d}=-\mathcal{N} \frac{1}{\alpha_{e m}^{2}}\left(C_{8} O_{8}+C_{8}^{\prime}+O_{8}^{\prime}+\sum_{i=1, \ldots, 6} C_{i} O_{i}\right)+$ h.c $\longleftarrow O_{1}=\left(\bar{s}_{\mu} P_{L} T_{L}^{a} c\right)\left(\bar{c} \mu^{\mu} P_{L} T^{a} b\right)$

$\mathrm{C}_{9}-\mathrm{C}_{10}$ Global fit :

Angular and Branching fractions $\left\{\begin{array}{l}B \rightarrow K \mu \mu \\ B \rightarrow K^{*} \mu \mu \\ B_{s} \rightarrow \Phi \mu \mu\end{array}\right.$

$\mathrm{C}_{9}-\mathrm{C}_{10}$ Global fit :

Angular and Branching fractions
$\left\{\begin{array}{l}B \rightarrow K \mu \mu \\ B \rightarrow K^{*} \mu \mu \\ B_{s} \rightarrow \Phi \mu \mu\end{array}\right.$

Amplitude of $\mathrm{B} \rightarrow \mathrm{K}\left(^{*}\right) I I$ decays:

$$
\mathcal{A}\left(B \rightarrow K^{(*)} l^{+} l^{-}\right)=\mathcal{N}\left\{\left(C_{9} L_{V}^{\mu}+C_{10} L_{A}^{\mu}\right) \mathcal{F}_{\mu}\left(q^{2}\right)-\frac{L_{V}^{\mu}}{q^{2}}\left[C_{7} \mathcal{F}_{\mu}^{T}\left(q^{2}\right)+\mathcal{H}_{\mu}\left(q^{2}\right)\right]\right\}
$$

$$
\triangleright \text { Local } \quad \mathcal{F}_{\mu}\left(q^{2}\right)=\underbrace{\left\langle\overline{K^{(*)}}(k)\right| O_{7,9,10}|\bar{B}(k+q)\rangle}
$$

Diagrams by Javier Virto
\triangleright Non-Local $\left.\quad \mathcal{H}_{\mu}\left(q^{2}\right)=i \int d^{4} x e^{i q . x}\left\langle K^{(*)}(k)\right| T\left\{j_{\mu}^{e m}(x), C_{i} O_{i}(0)\right\}\right)|\bar{B}(k+q)\rangle$

$\mathrm{C}_{9}-\mathrm{C}_{10}$ Global fit :

Angular and Branching fractions $\left\{\begin{array}{l}\mathrm{B} \rightarrow \mathrm{K} \mu \mu \\ \mathrm{B} \rightarrow \mathrm{K}^{*} \mu \mu \\ \mathrm{~B}_{\mathrm{s}} \rightarrow \Phi{ }^{2} \mu \mu\end{array}\right.$

Fit of B_{R} of $B \rightarrow K^{*} \mu \mu$ at low q^{2} :

Impact of $\mathrm{B} \rightarrow \mathrm{K}^{*}$ Local Form Factors

Fit of B_{R} of $B \rightarrow K^{*} \mu \mu$ at low q^{2} :

Impact of $\mathrm{B} \rightarrow \mathrm{K}^{*}$ Local Form Factors

Fit of angular observables of $B \rightarrow K^{*} \mu \mu$ at low q^{2} :

Impact of $B \rightarrow K^{*}$ Local Form Factors

[1] 1503.05534 : Bharucha, Straub and Zwicky

Fit of angular observables of $B \rightarrow K^{*} \mu \mu$ at low q^{2} :

Impact of $\mathrm{B} \rightarrow \mathrm{K}^{*}$ Local Form Factors

Local Form Factors computation:

Remaining deviations in FCNC B-decays - both BR and angular observables- are sensitive to local form factors

The Wilson Coefficient fits are impacted !
How are these form factors computed?

Local Form Factors computation:

At high-q2 : computed on the lattice
\triangleright At low-q² : (mostly) Light-Cone Sum Rule (LCSR)

Local Form Factors computation:

- At high-q ${ }^{2}$: computed on the lattice
\Rightarrow At low- ${ }^{2}$: (mostly) Light-Cone Sum Rule (LCSR) $\begin{aligned} & \text { Challenging systematic } \\ & \text { uncertainties }\end{aligned}$

Procedure for Light-Cone Sum Rules :

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

B to vacuum correlation function

Express it in function of the
 non-perturbative quantities of interest
(here form factors)

Procedure for Light-Cone Sum Rules:

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

B to vacuum correlation function

Express it in function of the

> Compute it perturbatively non-perturbative quantities of interest
(here form factors)

Procedure for Light-Cone Sum Rules :

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Procedure for Light-Cone Sum Rules :

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Hadronic unitarity
relation
+
Dispersion relation
a F.F

Density of continuum
$\Pi^{\mu \nu}(q, k)=\frac{\langle O| J_{i n t}^{\nu}|M(k)\rangle\left(M(k)\left|J_{\text {weok }}^{\mu}\right| \bar{B}(q+k)\right\rangle}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d \stackrel{\rho^{\text {and excied state }}}{s-k^{2}}(s)$

Procedure for Light-Cone Sum Rules :

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Hadronic unitarity
relation
+
Dispersion relation

$$
\alpha \text { F.F }
$$

Density of continuum
and excited states
$\Pi^{\mu \nu}(q, k)=\frac{\langle O| J_{i n t}^{\nu}|M(k)\rangle M(k) J_{w e n k}^{\mu}|\bar{B}(q+k)\rangle}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{n}}^{+\infty} d \stackrel{\underline{\rho^{\mu \nu}(s)}}{s-k^{2}}$

$$
K^{(F)} \frac{F\left(q^{2}\right)}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d s \frac{\rho(s)}{s-k^{2}}
$$

Procedure for Light-Cone Sum Rules :

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{i n t}^{\nu}(x) J_{w e a k}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Hadronic unitarity relation
+
HQET
Dispersion relation
Density of continuum
and excited states
$\Pi^{\mu \nu}(q, k)=\frac{\langle O| J_{\text {int }}^{\nu}|M(k)\rangle\langle M(k)| J_{\text {weok }}^{\mu}|\bar{B}(q+k)\rangle}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{k}}^{+\infty} d s \frac{\rho^{\mu \nu}(s)}{s-k^{2}} \quad \Pi^{\mu \nu}=\int d^{4} x \int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} e^{i\left(k-p^{\prime}\right) . x}\left[\Gamma_{2}^{\prime} \frac{p^{\prime}+m_{1}}{m_{1}^{2}-p^{\prime 2}} \Gamma_{1}^{u}\right]_{\alpha \beta}\langle 0| \bar{q}_{2}^{\alpha}(x) h_{v}^{\beta}(0)|B \bar{B}(v)\rangle+$

$$
K^{(F)} \frac{F\left(q^{2}\right)}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d s \frac{\rho(s)}{s-k^{2}}
$$

Procedure for Light-Cone Sum Rules:

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{i n t}^{\nu}(x) J_{w e a k}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Hadronic unitarity relation
+
HQET
Dispersion relation
Density of continuum
and excited states
$\Pi^{\mu \nu}(q, k)=\frac{\langle O| J_{i n t}^{\nu}|M(k)\rangle M(k) J_{w e n k}^{\mu}|\bar{B}(q+k)\rangle}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{n}}^{+\infty} d \stackrel{\underline{\rho^{\mu \nu}(s)}}{s-k^{2}}$ $\Pi^{\mu \nu}=\int d^{4} x \int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} e^{i\left(k-p^{\prime}\right) \cdot x}\left[\Gamma_{2}^{\prime} \frac{p^{\prime}+m_{1}}{m_{1}^{2}-p^{\prime 2}} \Pi_{1}^{u}\right]_{\alpha \beta}\langle 0| \bar{q}_{2}^{\alpha}(x) h_{v}^{\beta}(0)|B \overline{(v)}\rangle+$ $x^{2} \ll 1 / \Lambda_{Q C D}^{2} \rightarrow$ Light-Cone OPE In growing twist (dimension - spin)

Non perturbative input : B-meson LC distribution amplitudes

$$
K^{(F)} \frac{F\left(q^{2}\right)}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d s \frac{\rho(s)}{s-k^{2}} \quad f_{B} m_{B} \int_{0}^{+\infty} d s \sum_{n=1}^{+\infty} \frac{I_{n}(s)}{\left(s-k^{2}\right)^{n}}
$$

Procedure for Light-Cone Sum Rules:

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Hadronic unitarity
relation
+
HQET
Dispersion relation

$$
\alpha \text { F.F }
$$

Density of continuum
and excited states
$\Pi^{\mu \nu}(q, k)=\frac{\langle O| J_{i n t}^{\nu}|M(k)\rangle\langle M(k)| J_{\text {weon }}^{\mu}|\bar{B}(q+k)\rangle}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d s \frac{\rho^{\rho^{\prime \nu}(s)}}{s-k^{2}}$
$\Pi^{\mu \nu}=\int d^{4} x \int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} e^{i\left(k-p^{\prime}\right) \cdot x}\left[\Gamma_{2}^{\prime} \frac{p^{\prime}+m_{1}}{m_{1}^{2}-p^{\prime 2}} \Pi_{1}^{u}\right]_{\alpha \beta}\langle 0| \bar{q}_{2}^{\alpha}(x) h_{v}^{\beta}(0)|B \overline{(v)}\rangle+$
$x^{2} \ll 1 / \Lambda_{Q C D}^{2} \rightarrow$ Light-Cone OPE
In growing twist (dimension - spin)
Non perturbative input : B-meson LC distribution amplitudes

$$
K^{(F)} \frac{F\left(q^{2}\right)}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d s \frac{\rho(s)}{s-k^{2}}=f_{B} m_{B} \int_{0}^{+\infty} d s \sum_{n=1}^{+\infty} \frac{I_{n}(s)}{\left(s-k^{2}\right)^{n}}
$$

Procedure for Light-Cone Sum Rules:

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Hadronic unitarity
relation
+
HQET
Dispersion relation
Density of continuum
and excited states
$\Pi^{\mu \nu}(q, k)=\frac{\langle O| J_{i n t}^{\nu}|M(k)\rangle\langle M(k)| J_{\text {weon }}^{\mu}|\bar{B}(q+k)\rangle}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d s \frac{\rho^{\rho^{\prime \nu}(s)}}{s-k^{2}}$
$\Pi^{\mu \nu}=\int d^{4} x \int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} e^{i\left(k-p^{\prime}\right) \cdot x}\left[\Gamma_{2}^{\prime} \frac{p^{\prime}+m_{1}}{m_{1}^{2}-p^{\prime 2}} \overline{1}_{1}^{u}\right]_{\alpha \beta}\langle 0| \bar{q}_{2}^{\alpha}(x) h_{v}^{\beta}(0)|B \overline{(v)}\rangle+$
$x^{2} \ll 1 / \Lambda_{Q C D}^{2} \rightarrow$ Light-Cone OPE
In growing twist (dimension - spin)
Non perturbative input : B-meson LC
What we want

What we have

$$
K(F) \frac{F^{2}\left(q^{2}\right)}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d s \frac{\rho(s)}{s-k^{2}}=f_{B} m_{B} \int_{0}^{+\infty} d s \sum_{n=1}^{+\infty} \frac{I_{n}(s)}{\left(s-k^{2}\right)^{n}}
$$

Procedure for Light-Cone Sum Rules :

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}\langle 0| T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)|\bar{B}(q+k)\rangle
$$

Hadronic unitarity relation
+
HQET
Dispersion relation
Density of continuum
and excited states

$$
\Pi^{\mu \nu}=\int d^{4} x \int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} e^{i\left(k-p^{\prime}\right) . x}\left[\Gamma_{2}^{\prime} \frac{p^{\prime}+m_{1}}{m_{1}^{2}-p^{\prime 2}} \Gamma_{1}^{u}\right]_{\alpha \beta}\langle 0| \bar{q}_{2}^{\alpha}(x) h_{v}^{\beta}(0)|B \overline{(v)}\rangle+. .
$$

$$
x^{2} \ll 1 / \Lambda_{Q C D}^{2} \rightarrow \text { Light-Cone OPE }
$$

In growing twist (dimension - spin)

Non perturbative input : B-meson LC

What we want

$$
K(F) \frac{\left.\mathbb{F}_{-2}^{2}\right)}{m_{M}^{2}-k^{2}}+\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty}
$$

What is this?

What we have s

$$
d s \frac{(\rho(s)}{s-k^{2}}=f_{B} m_{B} \int_{0}^{+\infty} d s \sum_{n=1}^{+\infty} \frac{I_{n}(s)}{\left(s-k^{2}\right)^{n}}
$$

Estimating the density:

At leading twist:

Estimating the density:

At leading twist:

Estimating the density:

At leading twist:

Semi-Global Quark Hadron duality $\downarrow \mathbf{s} 0$: duality threshold

$$
\frac{1}{2 \pi} \int_{s_{0}^{h}}^{+\infty} d s \rho(s) e^{-s / M^{2}} \approx f_{B} m_{B} \int_{s_{0}}^{+\infty} d s I_{1}(s) e^{-s / M^{2}}
$$

Setting the parameters:

$$
F\left(q^{2}\right)=\frac{f_{B} m_{B}}{K^{(F)}} \int_{0}^{s_{0}} d s I_{1}(s) e^{-\left(s-m^{2}\right) / M^{2}}
$$

$>$ Borel parameter M^{2} : compromise between supression of higher twists, and continuum and excited states contribution

Range of the Borel parameter
E.g. for $B \rightarrow K: M^{2} \in[0.5,1.5] \mathrm{GeV}^{2}$
$>$ Duality threshold s0: Independence of $F\left(q^{2}\right)$ w.r.t M^{2} :

Daughter Sum Rule : $\frac{d}{d M^{2}} F\left(q^{2}\right)=0$

(Preliminary) results:

s_{0} from SVZ sum rules Khodjamirian-Mannel hep-ph/0308297

Form Factor $q^{2}=0$	Our Result	Gubernari et al. 2018	Other results
$f_{+}^{B \rightarrow \pi}$	$\underset{\text { PRELIMINARY }}{0.249} \pm 0.064$	0.21 ± 0.07	$\begin{array}{cc} \hline 0.258 \pm 0.031 & {[1]} \\ 0.25 \pm 0.05 & \text { [2] } \\ 0.301 \pm 0.023 & {[3]} \\ 0.280 \pm 0.037 & {[4]} \end{array}$
$f_{T}^{B \rightarrow \pi}$	0.259 ± 0.065 PRELIMINARY	0.19 ± 0.06	$\begin{aligned} 0.253 & \pm 0.028 \\ 0.21 & \pm 0.04 \\ 0.273 & \pm 0.021 \\ 0.26 & \pm 0.06 \end{aligned}$
$f_{+}^{B \rightarrow K}$	0.376 ± 0.068 PRELIMINARY	0.27 ± 0.08	$\begin{array}{rlr} 0.331 & \pm 0.041 & {[1]} \\ 0.31 & \pm 0.04 & {[2]} \\ 0.395 & \pm 0.033 \\ 0.364 & \pm 0.05 & {[4]} \tag{4} \end{array}$
$f_{T}^{B \rightarrow K}$	0.367 ± 0.053 PRELIMINARY	0.25 ± 0.07	$\begin{array}{cc} \hline 0.358 \pm 0.037 & {[1]} \\ 0.27 \pm 0.04 & {[2]} \\ 0.381 \pm 0.027 & {[3]} \\ 0.363 \pm 0.08 & {[4]} \end{array}$

- Following a very similar procedure to Gubernari et al 2018
- Results in agreement with previous calculations
[1] Ball and Zwicky 2005, light meson DA's
[2] Khodjamirian, Mannel, Offen 2007, B meson DA's
[3] Khodjamirian, Rusov, LCSR + CKM
[4] Lu, Shen, Wang, Wei, LCSR + QCD SR up to twist 6

Conclusion :

> Remaining deviations in FCNC B-decays - both BR and angular observablesare sensitive to form factors
> LCSR can be used to predict form factors at low q^{2} but suffer from large uncertainties
$>$ Coming results : $\mathrm{B} \rightarrow \mathrm{K}\left(^{*}\right), \mathrm{D}\left(^{*}\right)$ local form factors

Backup:

$\mathrm{C}_{9}{ }^{\mu}-\mathrm{C}_{10}{ }^{\mu}$ fit :

Angular and B_{R} at low q^{2} :

Impact of $B \rightarrow K^{*}$ Non-Local Contributions

Angular and B_{R} at low q^{2} :

Impact of $\mathrm{B} \rightarrow \mathrm{K}^{*}$ Non-Local Contributions

Angular and B_{R} at low q^{2} :

Impact of $B \rightarrow K^{*}$ Non-Local Contributions

Amplitude of $\mathbf{B} \rightarrow \mathbf{M} \ell \ell$ decays

Local contributions - definition of the form factors

- 3 independent f.f. for B to pseudoscalar meson:

$$
\begin{aligned}
\langle P(k)| \bar{q}_{1} \gamma^{\mu} b|B(p)\rangle & =\left[(p+k)^{\mu}-\frac{m_{B}^{2}-m_{P}^{2}}{q^{2}} q^{\mu}\right] f_{+}^{B \rightarrow P}+\frac{m_{B}^{2}-m_{P}^{2}}{q^{2}} q^{\mu} f_{0}^{B \rightarrow P} \\
\langle P(k)| \bar{q}_{1} \sigma^{\mu \nu} q_{\nu} b|B(p)\rangle & =\frac{i f_{T}^{B \rightarrow P}}{m_{B}+m_{P}}\left[q^{2}(p+k)^{\mu}-\left(m_{B}^{2}-m_{P}^{2}\right) q^{\mu}\right]
\end{aligned}
$$

- 7 independent f.f. for $\langle V(k, \eta)| \bar{q}_{1} \gamma^{\mu} b|B(p)\rangle=\epsilon^{\mu \mu \rho \sigma} \eta_{\nu}^{*} p_{\rho} k_{\sigma} \frac{2 V^{B-V}}{m_{B}+m_{V}}$ B to vector meson:

$$
\begin{aligned}
& \langle V(k, \eta)| \bar{q}_{1} \gamma^{\mu} \gamma_{5} b|B(p)\rangle=i \eta_{\nu}^{*}\left[g^{\mu \nu}\left(m_{B}+m_{V}\right) A_{1}^{B \rightarrow V}-\frac{(p+k)^{\mu} q^{\nu}}{m_{B}+m_{V}} A_{2}^{B \rightarrow V}-q^{\mu} q^{\nu} \frac{2 m_{V}}{q^{2}}\left(A_{3}-A_{0}\right)\right] \\
& \langle V(k, \eta)| \bar{q}_{1} i \sigma^{\mu \nu} q_{\nu} b|B(p)\rangle=\epsilon^{\mu \nu \rho \sigma} \eta_{\nu}^{*} p_{\rho} k_{\sigma} 2 T_{1}^{B \rightarrow V}
\end{aligned}
$$

$A_{3}^{B \rightarrow V} \equiv \frac{m_{B}+m_{V}}{2 m_{V}} A_{1}^{B \rightarrow V}-\frac{m_{B}-m_{V}}{2 m_{V}} A_{2}^{B \rightarrow V}$.

$$
\left.\left.\langle V(k, \eta)| \bar{q}_{I} i \sigma^{\mu \nu} q_{\nu} \gamma_{5} b|B(p)\rangle=i \eta_{V}^{*}\left(g^{\mu \nu}\left(m_{B}^{2}-m_{V}^{2}\right)-(p+k)^{\mu} q^{\nu}\right) T_{2}^{B \rightarrow V}+q^{\nu}\left(q^{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{V}^{2}}(p+k)^{\mu}\right)\right)_{T_{3}^{B \rightarrow V}}\right]
$$

LCSR: The correlation function

$$
\left.\Pi^{\mu \mu}(q, k)=i \int d^{4} x e^{i k x}<0 \mid T J_{i n k}^{\nu}(x)\right)_{\text {weak }}^{\mu}(0) \mid \bar{B}\left(P_{B}=q+k\right)>
$$

Unitarity relation
\propto decay constant of the light meson

$$
\begin{aligned}
& \langle 0| \bar{q}_{2} \gamma^{\nu} \gamma_{q_{1}}|P(k)\rangle=i k^{k} f_{P} \\
& \langle 0| \bar{q}_{2} \gamma_{1}|V(k, \eta)\rangle=i \eta^{\nu} m_{v} f_{V}
\end{aligned}
$$

$\left.2 \operatorname{Im}\left(\Pi^{\mu \nu}\right)=\sum_{\mathrm{X}} \int \mathrm{d} \tau_{\mathrm{X}}<0\left|\mathrm{~J}_{\text {int }}^{\nu}\right| \mathrm{X}><\mathrm{X}\left|\mathrm{J}_{\text {weak }}^{\mu}\right| \overline{\mathrm{B}}>(2 \pi)^{4} \delta^{(4)}\left(\mathrm{k}-\mathrm{P}_{\mathrm{X}}\right)\right)$
Dispersion relation
$\Pi^{\mu \nu}\left(q^{2}, k^{2}\right)=\frac{1}{\pi} \int_{t_{\text {min }}}^{+\infty} d s \frac{\operatorname{Im} \Pi^{\mu \nu}\left(\mathrm{q}^{2}, \mathrm{~s}\right)}{s-k^{2}}$

Continuum, a priori unknown

Light-Cone Sum Rules

B-meson distribution amplitude

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k . x}<0\left|T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)\right| \bar{B}\left(P_{B}=q+k\right)>
$$

Condition for Perturbativity and
Light-Cone dominance:

$$
\Pi^{\mu \nu}(q, k)=i \int d^{4} x e^{i k x}<0\left|T J_{\text {int }}^{\nu}(x) J_{\text {weak }}^{\mu}(0)\right| \bar{B}_{v}\left(h_{v}=\tilde{q}+k\right)>+\mathcal{O}\left(1 / m_{b}\right) \quad \tilde{q} \leq m_{b}^{2}+m_{b} k^{2} / \Lambda_{\text {had }}
$$

$$
\Pi^{\mu \nu}=\int d^{4} x \int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} e^{i\left(k-p^{\prime}\right) x}\left[\Gamma_{2}^{\nu} \frac{p^{\prime}+m_{1}}{m_{1}^{2}-p^{2}} \Gamma_{1}^{\mu}\right]_{\alpha \beta}<0\left|\bar{q}_{2}^{\alpha}(x) h_{v}^{\beta}(0)\right| \bar{B}(v)>
$$

Can be expressed as a function of B-meson distribution amplitudes

$$
\begin{aligned}
<0\left|\bar{q}_{2}^{\alpha}(x) h_{v}^{\beta}(0)\right| \bar{B}(v)> & =-\frac{i f_{B} m_{B}}{4} \int_{0}^{+\infty} d w e^{-i w v . x} \Phi_{2 p}(w)^{\beta \alpha} \\
& =\sum_{t}-\frac{i f_{B} m_{B}}{4} \int_{0}^{+\infty} d w e^{-i w v . x} \Phi_{2 p}^{t}(w)^{\beta \alpha}
\end{aligned}
$$

List of Form Factors used

$B \rightarrow K: 2018$ Gubernari et al
$B \rightarrow K^{*}$: 2015 BSZ
Bs \rightarrow © : 2015 BSZ

B_{R} at low q^{2} :

Impact of $B \rightarrow K$ Local Form Factors

B_{R} at low q^{2} :

Impact of $B \rightarrow K$ Local Form Factors

B_{R} at low q^{2} :

Impact of $\mathrm{B} \rightarrow \mathrm{K}$ Local Form Factors

List of $b \rightarrow$ sll operators

$$
\begin{aligned}
O_{1} & =\left(\bar{s} \gamma_{\mu} T^{a} P_{L} c\right)\left(\bar{c} \gamma^{\mu} T^{a} P_{L} b\right), \\
O_{2} & =\left(\bar{s} \gamma_{\mu} P_{L} c\right)\left(\bar{c} \gamma^{\mu} P_{L} b\right), \\
O_{3} & =\left(\bar{s} \gamma_{\mu} P_{L} b\right) \sum_{q}\left(\bar{q} \gamma^{\mu} q\right), \\
O_{4} & =\left(\bar{s} \gamma_{\mu} T^{a} P_{L} b\right) \sum_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right), \\
O_{5} & =\left(\bar{s} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} P_{L} b\right) \sum_{q}\left(\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} q\right), \\
O_{6} & =\left(\bar{s} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} T^{a} P_{L} b\right) \sum_{q}\left(\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} T^{a} q\right), \\
O_{7} & =\frac{e}{16 \pi^{2}}\left[\bar{s} \sigma^{\mu \nu}\left(m_{s} P_{L}+m_{b} P_{R}\right) b\right] F_{\mu \nu}, \\
O_{8} & =\frac{g}{16 \pi^{2}}\left[\bar{s} \sigma^{\mu \nu}\left(m_{s} P_{L}+m_{b} P_{R}\right) T^{a} b\right] G_{\mu \nu}^{a},
\end{aligned}
$$

Full and Soft approach:

Full : using the whole set of form factors
\checkmark Soft : using the symmetry relations between form factors to eliminate form factors ratios

$$
\begin{aligned}
\frac{f_{0}}{f_{+}} & =\frac{2 E_{K}}{M_{B}}\left(1+\frac{\alpha_{s} C_{F}}{4 \pi}[2-2 L]+\frac{\alpha_{s} C_{F}}{4 \pi} \frac{M_{B}\left(M_{B}-2 E_{K}\right)}{\left(2 E_{K}\right)^{2}} \frac{\Delta F_{P}}{\xi_{P}}\right) \\
\frac{f_{T}}{f_{+}} & =\frac{M_{K}+M_{B}}{M_{B}}\left(1+\frac{\alpha_{s} C_{F}}{4 \pi}\left[\ln \frac{m_{b}^{2}}{\mu^{2}}+2 L\right]-\frac{\alpha_{s} C_{F}}{4 \pi} \frac{M_{B}}{2 E_{K}} \frac{\Delta F_{P}}{\xi_{P}}\right)
\end{aligned}
$$

$$
\begin{equation*}
\Delta F_{P}=\frac{8 \pi^{2} f_{B} f_{P}}{N_{C} M_{B}} \int \frac{d \omega}{\omega} \Phi_{B,+}(\omega) \int_{0}^{1} d u \frac{\Phi_{K}(u)}{\bar{u}} . \tag{741}
\end{equation*}
$$

and

$$
\begin{equation*}
L \equiv-\frac{m_{b}^{2}-q^{2}}{q^{2}} \ln \left(1-\frac{q^{2}}{m_{b}^{2}}\right) \tag{742}
\end{equation*}
$$

