The Cabibbo Angle Anomaly and a global fit to vector-like quarks

Matthew Kirk
ICCUB, Barcelona

Institut de Ciències del Cosmos
(mostly based on 2212. 06862 with Crivellin, Kitahara, Mescia) FPCP 2023 - 30 May 2023

CKM Matrix

- 3×3 unitary matrix, by construction
- Implies many relationships between elements
- 9 complex elements, but only 4 parameters
- Including:
$-\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1$

First row unitarity

- $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1$
- $\left|V_{u b}\right|^{2}$ is very small, less than current uncertainties
- So we can approximate: $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}=1$
- SM predicts this relation, but not the values

Cabibbo Angle Anomaly

Cabibbo Angle Anomaly

What changed?

- Lattice QCD improvements

$$
\begin{aligned}
& -f_{K} / f_{\pi}: 1.193 \pm 0.003 \rightarrow 1.193 \pm 0.002\left(N_{f}=2+1+1\right) \\
& -f_{+}(0): 0.971 \pm 0.003 \rightarrow 0.970 \pm 0.002\left(N_{f}=2+1+1\right)
\end{aligned}
$$

- Nuclear beta decay theory
- New calculations of $\gamma-W$ EW corrections
- Reanalysis of other nuclear uncertainties

Cabibbo Angle Anomaly

Cabibbo Angle Anomaly

Roughly
$\sim 3 \sigma$
tension

What's behind this?

- BSM models
- Leptoquarks, W', vector-like leptons, vector-like quarks
- Vector-like quarks are the best option!

What's behind this?

- BSM models
- Leptoquarks, W', vector-like leptons, vector-like quarks
- Vector-like quarks are the best option!
- Why?
- RH currents affect 3-body vs 2-body decays differently!

Vector-like quarks

- New heavy fermions, but L and R have the same charge under the gauge groups
- 7 representations that couple to SM at tree level

Vector-like quarks

- New heavy fermions, but L and R have the same charge under the gauge groups

- $S U(2)$ singlets/triplets modify LH W coupling
- One $S U(2)$ doublet generates RH W couplings

Vector-like quarks

- $S U(2)$ triplets modify LH W coupling
- But with wrong sign

Vector-like quarks

- $S U(2)$ singlets modify LH W coupling
- With right sign!
- But strong constraints from K/D mixing, as well as EWPO and low energy parity violation
- Overall 2σ pull vs SM

Vector-like quarks

- Only $Q_{1} S U(2)$ doublet generates RH W couplings
- EWPO less strong, meson mixing almost absent
- Low energy PV important

Vector-like quarks
 $$
Q\left(M_{Q}=2 \mathrm{TeV}\right)
$$

$$
\square \mathrm{CKM} \quad-\mathrm{EWPO} \quad-\mathrm{PV} \quad-\text { Global }
$$

Future experiments?

- NA62 could measure $K_{\ell 3} / K_{\mu 2}$
- Two weeks of data could increase tension to 4σ
- See 2208. 11707
(Cirigliano, Crivellin, Hoferichter, Moulson)
- Also new data in
$K_{\mu 2}$ would be good
- Only recent data from KLOE in 2008

Future experiments?

- PIONEER @ PSI (2203.01981, also talk by Toshiyuki Iwamoto on Thursday)
- Can measure the LFU ratio $\pi^{+} \rightarrow \mu \nu / \pi^{+} \rightarrow e \nu$
- And $\pi^{+} \rightarrow \pi^{0} e \nu\left(\pi_{e 3}\right)$
- $\pi_{e 3}$ is theoretically clean, and can reduce uncertainty further by considering $K_{\ell 3} / \pi_{e 3}$
- See 1911. 04685 (Czarnecki, Marciano, Sirlin)

Summary

- Improvements in lattice and interesting new developments in beta decay have lead to $\sim 3 \sigma$ anomaly
- VLQs seem a good BSM candidate
- $S U(2)$ doublet Q_{1} in particular
- Hopefully new data will sharpen the tension

Backup

Low energy parity violation

- $\left(\bar{e} \gamma_{\mu} \gamma_{5} e\right)\left(\bar{q} \gamma^{\mu} q\right)$ or $\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{q} \gamma^{\mu} \gamma_{5} q\right)$
- Weak charge of the proton, more generally parity violating electron scattering or parity violating atomic transitions

Pion beta decay

EW modifications

2023 with RH Wud, Wus $\approx-10^{-3}$

- Modifications of RH current

EW modifications

2023 with LH Wud $\approx-10^{-3}$

- Modifications of LH current

VLQs - U \& D singlets

VLQs - U \& D singlets

$$
D\left(M_{D}=2 \mathrm{TeV}\right)
$$

Cabibbo Angle

$$
\theta_{C}=\arccos V_{u d}=\arcsin V_{u s}=\arctan V_{u s} / V_{u d}
$$

$$
\text { - } K_{\ell 3} \cdot K_{\mu 2} / \pi_{\mu 2} \cdot 0^{+} \rightarrow 0^{+}
$$

EW scale modifications

- Modifications of RH $W-u-d$ and $W-u-s$
- Pull of 3.2σ relative to SM

Nuclear corrections

- $\gamma-W$ box increased by about 3σ, but now has half the error
- See appendix of (Cirigliano, Crivellin, Hoferichter, Moulson)
- However, new analysis of isospin-breaking corrections and other nuclear uncertainties has lead to larger error estimates

