The Cabibbo Angle Anomaly and a global fit to vector-like quarks

Matthew Kirk ICCUB, Barcelona

Institut de Ciències del Cosmos

(mostly based on 2212.06862 with Crivellin, Kitahara, Mescia) FPCP 2023 – 30 May 2023

CKM Matrix

- 3x3 unitary matrix, by construction
- Implies many relationships between elements
 - 9 complex elements, but only 4 parameters
- Including:

$$- |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

First row unitarity

- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- $|V_{ub}|^2$ is very small, less than current uncertainties
- So we can approximate: $|V_{ud}|^2 + |V_{us}|^2 = 1$
- SM predicts this relation, but not the values

Cabibbo Angle Anomaly

Cabibbo Angle Anomaly

What changed?

Lattice QCD improvements

$$-f_K/f_\pi: 1.193 \pm 0.003 \rightarrow 1.193 \pm 0.002 (N_f = 2 + 1 + 1)$$

$$-f_{+}(0): 0.971 \pm 0.003 \rightarrow 0.970 \pm 0.002 (N_f = 2 + 1 + 1)$$

- Nuclear beta decay theory
 - New calculations of γ -W EW corrections
 - Reanalysis of other nuclear uncertainties

Cabibbo Angle Anomaly

Cabibbo Angle Anomaly

Roughly $\sim 3\,\sigma$ tension

What's behind this?

- BSM models
 - Leptoquarks, W', vector-like leptons, vector-like quarks
- Vector-like quarks are the best option!

What's behind this?

- BSM models
 - Leptoquarks, W', vector-like leptons, vector-like quarks
- Vector-like quarks are the best option!
 - Why?
 - RH currents affect 3-body vs 2-body decays differently!

- New heavy fermions, but L and R have the same charge under the gauge groups
- 7 representations that couple to SM at tree level

 New heavy fermions, but L and R have the same charge under the gauge groups

```
• Name U D Q_1 Q_5 Q_7 T_1 T_2

Irrep (3,1)_{\frac{2}{3}} (3,1)_{-\frac{1}{3}} (3,2)_{\frac{1}{6}} (3,2)_{-\frac{5}{6}} (3,2)_{\frac{7}{6}} (3,3)_{-\frac{1}{3}} (3,3)_{\frac{2}{3}}
```

- SU(2) singlets/triplets modify LH W coupling
- One SU(2) doublet generates RH W couplings

- SU(2) triplets modify LH W coupling
- But with wrong sign

- SU(2) singlets modify LH W coupling
 - With right sign!
- But strong constraints from K/D mixing, as well as EWPO and low energy parity violation
- Overall 2σ pull vs SM

- Only $Q_1 \; SU(2)$ doublet generates RH W couplings
- EWPO less strong, meson mixing almost absent
- Low energy PV important

Future experiments?

- NA62 could measure $K_{\ell 3}/K_{\mu 2}$
- Two weeks of data could increase tension to $4\,\sigma$
- See 2208.11707
 (Cirigliano, Crivellin, Hoferichter, Moulson)

- Also new data in $K_{\mu 2}$ would be good
 - Only recent data from KLOE in 2008

Future experiments?

- PIONEER @ PSI (2203.01981, also talk by Toshiyuki Iwamoto on Thursday)
 - Can measure the LFU ratio $\pi^+ \to \mu \nu/\pi^+ \to e \nu$
 - And $\pi^+ \to \pi^0 e \nu \; (\pi_{e3})$
- π_{e3} is theoretically clean, and can reduce uncertainty further by considering $K_{\ell 3}/\pi_{e3}$
 - See 1911.04685 (Czarnecki, Marciano, Sirlin)

Summary

- Improvements in lattice and interesting new developments in beta decay have lead to $\sim 3\,\sigma$ anomaly
- VLQs seem a good BSM candidate
- SU(2) doublet Q_1 in particular
- Hopefully new data will sharpen the tension

Backup

Low energy parity violation

- $(\bar{e}\gamma_{\mu}\gamma_{5}e)(\bar{q}\gamma^{\mu}q)$ or $(\bar{e}\gamma_{\mu}e)(\bar{q}\gamma^{\mu}\gamma_{5}q)$
- Weak charge of the proton, more generally parity violating electron scattering or parity violating atomic transitions

Pion beta decay

EW modifications

 Modifications of RH current

EW modifications

2023 with LH Wud $\approx -10^{-3}$

 Modifications of LH current

VLQs – U & D singlets

 $U (M_U = 2 \text{ TeV})$

VLQs – U & D singlets

K FCNC

PV

 ΔM_D

CKM

EWPO

Global

Cabibbo Angle

$$\theta_C = \arccos V_{ud} = \arcsin V_{us} = \arctan V_{us}/V_{ud}$$
0.225 0.226 0.227 0.228 0.229 0.230 0.231

• $K_{\ell 3}$ • $K_{\mu 2}/\pi_{\mu 2}$ • $0^+ \to 0^+$

EW scale modifications

- Modifications of RH W-u-d and W-u-s
- Pull of $3.2\,\sigma$ relative to SM

Nuclear corrections

- γW box increased by about $3\,\sigma$, but now has half the error
 - See appendix of 2208.11707 for discussion (Cirigliano, Crivellin, Hoferichter, Moulson)
- However, new analysis of isospin-breaking corrections and other nuclear uncertainties has lead to larger error estimates