

The n2EDM experiment at PSI

neutron Electric Dipole Moment

FPCP 2023

Thomas Bouillaud – LPSC Grenoble.

What is the electric dipole moment?

Motion of a spin ½ particle in a magnetic field:

- $H = -\mu \boldsymbol{\sigma} \cdot \boldsymbol{B}$
- If $B = B_0 u_z$, precession motion with frequency given by $\hbar 2\pi f = 2\mu B_0$
- Neutron in $B_0 = 1 \,\mu\text{T} \rightarrow f \approx 30 \,s^{-1}$

What is the electric dipole moment?

Motion of a spin ½ particle in a magnetic field:

•
$$H = -\mu \boldsymbol{\sigma} \cdot \boldsymbol{B}$$

- If $B = B_0 u_z$, precession motion with frequency given by $\hbar 2\pi f = 2\mu B_0$
- Neutron in $B_0 = 1 \,\mu\text{T} \rightarrow f \approx 30 \,s^{-1}$

What about a spin ½ particle in an electric field?

•
$$H = -d \boldsymbol{\sigma} \cdot \boldsymbol{E}$$

- If $E = E_0 u_z$, precession motion with frequency given by $\hbar 2\pi f = 2d E_0$
- Neutron in $E = 15 \, k\text{V/cm} \, \Theta \, f < 2 \, \text{year}^{-1}$

With current limit $d_n < 10^{-26} e.$ cm

Why measure the neutron EDM?

Cosmological motivation: explain baryon asymmetry $\eta = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} \approx 10^{-10}$

Sakharov conditions for baryogenesis:

- 1. Non-conservation of baryonic number
- 2. Out-of-equilibrium thermal interactions
- 3. Violation of *C* and *CP* symmetries

Why measure the neutron EDM?

Cosmological motivation: explain baryon asymmetry $\eta = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} \approx 10^{-10}$

Sakharov conditions for baryogenesis:

- 1. Non-conservation of baryonic number
- 2. Out-of-equilibrium thermal interactions
- 3. Violation of C and CP symmetries

$$CP: id\bar{f}\sigma_{\mu\nu}\gamma_{5}f \ F^{\mu\nu} \to -id\bar{f}\sigma_{\mu\nu}\gamma_{5}f \ F^{\mu\nu}$$

$$T: -d \ \boldsymbol{\sigma} \cdot \boldsymbol{E} \ \to + d \ \boldsymbol{\sigma} \cdot \boldsymbol{E}$$

EDMs are described by couplings that violate CP (or T by CPT)

2. Measurement

How do we measure the neutron EDM?

$$2\pi f_n = \frac{2\mu_n}{\hbar} B_0 \pm \frac{2d_n}{\hbar} E_0 \implies f_n(\uparrow \uparrow) - f_n(\uparrow \downarrow) = -\frac{2}{\pi \hbar} d_n E_0$$

2. Measurement

How do we measure the neutron EDM?

How do we measure the neutron EDM?

$$2\pi f_n = \frac{2\mu_n}{\hbar} B_0 \pm \frac{2d_n}{\hbar} E_0 \implies f_n(\uparrow \uparrow) - f_n(\uparrow \downarrow) = -\frac{2}{\pi \hbar} \frac{d_n E_0}{d_n}$$

If
$$d_n = 10^{-26}e$$
. cm:
$$f_{n,\text{elec}} \approx 2 \text{ year}^{-1}$$
at $E_0 = 15 \text{ kV. cm}^{-1}$

Previous experiment: nEDM @ILL

What can we do to detect something that small?

- Maximize the interaction time
- Maximize the statistics
- Control the magnetic field

- → Ultra Cold Neutrons (UCNs).
- → Large cell volume, efficient UCN transport.
- → Co-magnetometry, magnetic shielding:

The n2EDM concept

MSR

UCN guides

Polarizing magnet

Detectors

Switch

The design of the n2EDM experiment,

Ayres et al, EPJC (2021).

BĒ

$\begin{array}{c|c} S \\ \hline IN \\ \hline S \\ \hline S \\ \hline OUT \\ S \\ \hline \end{array}$

The n2EDM concept

The design of the n2EDM experiment,

Ayres et al, EPJC (2021).

- Polarized UCNs precess in two chambers with opposite electric / magnetic configuration.
- ightharpoonup If non-zero EDM, $f_n^{\mathrm{TOP}} f_n^{\mathrm{BOT}} > 0$.
- > $f_n^{\rm TOP}$ and $f_n^{\rm BOT}$ extracted from the asymmetry of \uparrow and \downarrow spin states after precession: « Ramsey method ».

- → Current limit held by the nEDM/collab
- \rightarrow n2EDM d_n target sensitivity:

$$1 \times 10^{-27} e. cm$$

The sensitivity of n2EDM

50 years of neutron EDMs

- → Current limit held by the nEDM/collab
- \rightarrow n2EDM d_n target sensitivity:

$$1 \times 10^{-27} e. cm$$

The sensitivity of n2EDM

1) Maximizing the neutron statistics:

nEDM 2016	n2EDM
Larger chambers → more UCNs	

Diameter D	47 cm	80 cm
N (per cycle)	15,000	121,000
T	180 s	180 s

UCNs with v < 7m/s easily storable

50 years of neutron EDMs

- → Current limit held by the nEDM/collab
- \rightarrow n2EDM d_n target sensitivity:

$$1 \times 10^{-27} e. cm$$

The sensitivity of n2EDM

Maximizing the neutron statistics:

nEDM 2016	n2EDM

Larger chambers → more UCNs

Diameter D	47 cm	80 cm
N (per cycle)	15,000	121,000
T	180 s	180 s

UCNs with v < 7m/s easily storable

Minimizing the magnetic field related systematics:

- Mercury co-magnetometry to compensate field fluctuations: measure $\mathcal{R} = f_n/f_{Hg}$ instead of f_n .
- Active Magnetic Shield (AMS) to cancel external fields.
- Magnetic Shielding Room (MSR) to suppress non-uniformities.

2020: commissioning of the Magnetic Shielding Room

The very large n2EDM magnetically shielded room with an exceptional performance for fundamental physics measurements, Ayres et al, Review of Scientific Instruments (2022).

- \triangleright 6 layer of mumetal around a 25m³ volume.
- $ightharpoonup 10^5$ shielding factor at low frequency.
- \blacktriangleright Equipped with degaussing coils to reach residual field < 100~pT

4. n2EDM progress

Gradient coil (G10)

4. n2EDM progress

2022: commissioning of the

 B_0 field

Coil system to produce uniform field:

- \triangleright 1 main B_0 coil .
- ➤ 62 correcting coils.

RF coils

Robotic "mapper" to check uniformity.

Gradient coil (G10)

4. n2EDM progress

2022: commissioning of the

 B_0 field

- \triangleright 1 main B_0 coil .
- ➤ 62 correcting coils.

- ✓ Record field uniformity.
- ✓ Satisfies systematical requirements to reach $10^{-27}e$. cm sensitivity!

Conclusion and future prospects

n2EDM@PSI aims to reach unprecedented sensitivity on the neutron EDM thanks to:

- > Efficient UCN production/transport and large storage volume.
- > A remarkable control of magnetic field uniformity.

As of 2023:

- ✓ Magnetic shielding apparatus fully commissioned.
- ✓ Magnetic field ready for physics measurements.

Future prospects:

- ➤ UCNs in precession chambers in 2024.
- > Start data taking in 2025.

Backup slides

Formally: CP violating term (EM field and quark coupling)

$$\mathcal{L} = \frac{\mu}{2} \bar{f} \sigma_{\mu\nu} f F^{\mu\nu} - \frac{id}{2} \bar{f} \sigma_{\mu\nu} \gamma_5 f F^{\mu\nu}$$

$$H = -\mu \, \boldsymbol{\sigma} \cdot \boldsymbol{B} - d \, \boldsymbol{\sigma} \cdot \boldsymbol{E}$$

$$CP \qquad \mathcal{L} = \frac{\mu}{2} \bar{f} \sigma_{\mu\nu} f F^{\mu\nu} + \frac{id}{2} \bar{f} \sigma_{\mu\nu} \gamma_5 f F^{\mu\nu}$$

$$H = -\mu \, \boldsymbol{\sigma} \cdot \boldsymbol{B} - d \, \boldsymbol{\sigma} \cdot \boldsymbol{E}$$

In the Standard Model: ()

- CKM phase contribution to quark EDMs through at least 3 loops diagrams \rightarrow very negligible ($d_n \sim 10^{-32}e$. cm).
- QCD contribution $\frac{\alpha}{8\pi}\bar{\theta}~G^{\mu\nu}\widetilde{G_{\mu\nu}}$ should generate huge EDMs ($d_n\sim 10^{-16}e.$ cm). : current limit $d_n<\mathbf{10^{-26}}e.$ $cm\Rightarrow\bar{\theta}<10^{-10}$ (strong CP problem).

Beyond the SM:

• (ex) modified Higgs-fermion Yukawa coupling $\mathcal{L} = -\frac{y_f}{\sqrt{2}} \left(\kappa_f \bar{f} f h + i \tilde{\kappa}_f \bar{f} \gamma_5 f h \right)$ generates EDM at 2 loops.

2. Measurement

Counting spins with the Ramsey method

Up-down spin asymmetry $A \rightarrow$ precession frequency f_n

2. Measurement

BE BE

Hg co-magnetometry to compensate magnetic field fluctuations

23

How do we parametrize the magnetic field?

Polynomial field expansion

$$B(r) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{l} G_{lm} \Pi_{lm}(r)$$

Maxwell's equations $\nabla \cdot \mathbf{B} = 0$ and $\nabla \times \mathbf{B} = \mathbf{0}$

$$\boldsymbol{B}(\boldsymbol{r}) = \nabla \Sigma(\boldsymbol{r})$$

with

$$\Delta\Sigma(r,\varphi,\theta)=0$$

Laplace equation in spherical coordinates

Harmonic modes $\Pi_{lm}(r)$ deduced from solutions of Laplace equation

TABLE IV. The basis of harmonic polynomials sorted by degree in cylindrical coordinates.

ı	m	$\Pi_{ ho}$	Π_{ϕ}	Π_z
0	-1	$\sin \phi$	$\cos \phi$	0
0	0	0	0	1
0	1	$\cos \phi$	$-\sin\phi$	0
1	-2	$\rho \sin 2\phi$	$\rho \cos 2\phi$	0
1	-1	$z \sin \phi$	$z\cos\phi$	$\rho \sin \phi$
1	0	$-\frac{1}{2}\rho$	0	z
1	1	$z\cos\phi$	$-z\sin\phi$	$\rho \cos \phi$
1	2	$\rho \cos 2\phi$	$-\rho \sin 2\phi$	0
2	-3	$\rho^2 \sin 3\phi$	$\rho^2 \cos 3\phi$	0
2	-2	$2\rho z \sin 2\phi$	$2\rho z \cos 2\phi$	$\rho^2 \sin 2\phi$
2	-1	$\frac{1}{4}(4z^2-3\rho^2)\sin\phi$	$\frac{1}{4}(4z^2 - \rho^2)\cos\phi$	$2\rho z \sin \phi$
2	0	$-\rho z$	0	$-\frac{1}{2}\rho^2 + z^2$
2	1	$\frac{1}{4}(4z^2-3\rho^2)\cos\phi$	$\frac{1}{4}(\rho^2 - 4z^2)\sin\phi$	$2\rho z \cos \phi$
2	2	$2\rho z \cos 2\phi$	$-2\rho z \sin 2\phi$	$\rho^2 \cos 2\phi$
2	3	$\rho^2 \cos 3\phi$	$-\rho^2 \sin 3\phi$	0

- "Online" with mercury co-magnetometry and cesium magnetometers.
- "Offline" with the mapper.

Reminder: extraction of the harmonic spectrum

1) Do cylindrical map $B_z(\rho, \varphi, z)$

2) Fit rings with fourier series:

