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𝑺𝒑𝒊𝒏

𝑩

What is the electric dipole moment?
1. Introduction

Motion of a spin ½ particle in a magnetic field:

• 𝐻 = −𝜇 𝝈 ⋅ 𝑩

• If 𝑩 = 𝐵0𝒖𝒛, precession motion with frequency given by ℏ2𝜋𝑓 = 2𝜇 𝐵0

• Neutron in 𝐵0 = 1 𝜇T→ 𝑓 ≈ 30 𝑠−1
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𝑺𝒑𝒊𝒏

𝑩

𝑺𝒑𝒊𝒏

𝑬 What about a spin ½ particle in an electric field?

• 𝐻 = −𝑑 𝝈 ⋅ 𝑬

• If 𝑬 = 𝐸0𝒖𝒛, precession motion with frequency given by ℏ2𝜋𝑓 = 2𝑑 𝐸0

• Neutron in 𝐸 = 15 𝑘V/cm→ 𝑓 < 2 year−1

What is the electric dipole moment?
1. Introduction

Motion of a spin ½ particle in a magnetic field:

• 𝐻 = −𝜇 𝝈 ⋅ 𝑩

• If 𝑩 = 𝐵0𝒖𝒛, precession motion with frequency given by ℏ2𝜋𝑓 = 2𝜇 𝐵0

• Neutron in 𝐵0 = 1 𝜇T→ 𝑓 ≈ 30 𝑠−1

With current limit 𝑑𝑛 < 10−26𝑒. cm
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Why measure the neutron EDM?

Cosmological motivation: explain baryon asymmetry  𝜂 =
𝑛𝐵−𝑛ഥ𝐵
𝑛𝛾

≈ 10−10

Sakharov conditions for baryogenesis:

1. Non-conservation of baryonic number
2. Out-of-equilibrium thermal interactions
3. Violation of 𝑪 and 𝑪𝑷 symmetries

1. Introduction
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1. Non-conservation of baryonic number
2. Out-of-equilibrium thermal interactions
3. Violation of 𝑪 and 𝑪𝑷 symmetries

1. Introduction

𝐶𝑃: 𝑖𝑑 ҧ𝑓𝜎𝜇𝜈𝛾5𝑓 𝐹
𝜇𝜈 → −𝑖𝑑 ҧ𝑓𝜎𝜇𝜈𝛾5𝑓 𝐹

𝜇𝜈

𝑇:−𝑑 𝝈 ⋅ 𝑬 → + 𝑑 𝝈 ⋅ 𝑬

EDMs are described by couplings that violate 𝑪𝑷
(or 𝑻 by 𝑪𝑷𝑻)

𝑺𝒑𝒊𝒏

−𝑡

𝑺𝒑𝒊𝒏

𝑡

𝑬 𝑬𝑇
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How do we measure the neutron EDM?
2. Measurement

𝑺𝒑𝒊𝒏

𝑩 𝑬

2𝜋𝑓𝑛 =
2𝜇𝑛
ℏ

𝐵0 ±
2𝑑𝑛
ℏ

𝐸0 𝑓𝑛 ↑↑ − 𝑓𝑛 ↑↓ = −
2

𝜋ℏ
𝑑𝑛𝐸0
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𝑺𝒑𝒊𝒏

𝑩 𝑬

𝑓n,larmor ≈ 30 𝑠−1

at 𝐵0 = 1𝜇T

If 𝑑𝑛 = 10−26𝑒. cm :

𝑓𝑛,elec ≈ 2 year−1

at 𝐸0 = 15 𝑘V. cm−1

2. Measurement

How do we measure the neutron EDM?

2𝜋𝑓𝑛 =
2𝜇𝑛
ℏ

𝐵0 ±
2𝑑𝑛
ℏ

𝐸0 𝑓𝑛 ↑↑ − 𝑓𝑛 ↑↓ = −
2

𝜋ℏ
𝑑𝑛𝐸0
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𝑺𝒑𝒊𝒏

𝑩 𝑬

2𝜋𝑓𝑛 =
2𝜇𝑛
ℏ

𝐵0 ±
2𝑑𝑛
ℏ

𝐸0 𝑓𝑛 ↑↑ − 𝑓𝑛 ↑↓ = −
2

𝜋ℏ
𝑑𝑛𝐸0

𝑓𝑛,larmor ≈ 30 𝑠−1

at 𝐵0 = 1𝜇T

If 𝑑𝑛 = 10−26𝑒. cm :

𝑓𝑛,elec ≈ 2 year−1

at 𝐸0 = 15 𝑘V. cm−1

What can we do to detect something that small?

• Maximize the interaction time

• Maximize the statistics

• Control the magnetic field

→Ultra Cold Neutrons (UCNs).

→ Large cell volume, efficient UCN transport.

→Co-magnetometry, magnetic shielding.     

2. Measurement

How do we measure the neutron EDM?

Previous experiment: nEDM @ILL



3. n2EDM concept 

The n2EDM concept PSI, Switzerland.
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The design of the n2EDM experiment, 
Ayres et al, EPJC (2021).

https://link.springer.com/article/10.1140/epjc/s10052-021-09298-z


3. n2EDM concept 

The n2EDM concept PSI, Switzerland.

➢ Polarized UCNs precess in two chambers with opposite 
electric / magnetic configuration.

➢ If non-zero EDM, 𝑓𝑛
TOP − 𝑓𝑛

BOT > 0.

➢ 𝑓𝑛
TOP and 𝑓𝑛

BOT extracted from the asymmetry of ↑ and ↓
spin states after precession: « Ramsey method ».

𝑺 𝑺

𝑺

IN

OUT
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The design of the n2EDM experiment, 
Ayres et al, EPJC (2021).

https://link.springer.com/article/10.1140/epjc/s10052-021-09298-z
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3. n2EDM concept 

The sensitivity of n2EDM

→ Current limit held by the nEDM collab

→ n2EDM 𝒅𝒏 target sensitivity:

𝟏 × 𝟏𝟎−𝟐𝟕𝒆. 𝐜𝐦

50 years of neutron EDMs
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3. n2EDM concept 

The sensitivity of n2EDM

→ Current limit held by the nEDM collab

→ n2EDM 𝒅𝒏 target sensitivity:

𝟏 × 𝟏𝟎−𝟐𝟕𝒆. 𝐜𝐦

50 years of neutron EDMs

1) Maximizing the neutron statistics: 

UCNs with 𝑣 < 7m/s easily storable

Larger chambers →more UCNs
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3. n2EDM concept 

The sensitivity of n2EDM

→ Current limit held by the nEDM collab

→ n2EDM 𝒅𝒏 target sensitivity:

𝟏 × 𝟏𝟎−𝟐𝟕𝒆. 𝐜𝐦

50 years of neutron EDMs

1) Maximizing the neutron statistics: 

2) Minimizing the magnetic field related systematics:

➢ Mercury co-magnetometry to compensate field fluctuations: 
measure ℛ = 𝑓𝑛/𝑓𝐻𝑔 instead of 𝑓𝑛.

➢ Active Magnetic Shield (AMS) to cancel external fields.

➢ Magnetic Shielding Room (MSR) to suppress non-uniformities.

UCNs with 𝑣 < 7m/s easily storable

Larger chambers →more UCNs



4. n2EDM progress

The very large n2EDM magnetically shielded room with 
an exceptional performance for fundamental physics 
measurements, Ayres et al, Review of Scientific 
Instruments (2022).

2020: commissioning of the Magnetic Shielding Room 
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➢ 6 layer of mumetal around a 25m3 volume.

➢ 105shielding factor at low frequency.

➢ Equipped with degaussing coils to reach 
residual field < 100 𝑝T

https://pubs.aip.org/aip/rsi/article/93/9/095105/2849432/The-very-large-n2EDM-magnetically-shielded-room
https://pubs.aip.org/aip/rsi/article/93/9/095105/2849432/The-very-large-n2EDM-magnetically-shielded-room
https://pubs.aip.org/aip/rsi/article/93/9/095105/2849432/The-very-large-n2EDM-magnetically-shielded-room
https://pubs.aip.org/aip/rsi/article/93/9/095105/2849432/The-very-large-n2EDM-magnetically-shielded-room


4. n2EDM progress

2022: commissioning of the 
𝐵0 field
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Coil system to produce uniform field:
➢ 1 main 𝐵0 coil .
➢ 62 correcting coils.

.
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𝐵0 field
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Coil system to produce uniform field:
➢ 1 main 𝐵0 coil .
➢ 62 correcting coils.

Robotic “mapper” to check uniformity.



4. n2EDM progress

2022: commissioning of the 
𝐵0 field
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Coil system to produce uniform field:
➢ 1 main 𝐵0 coil .
➢ 62 correcting coils.

Robotic “mapper” to check uniformity.

nEDM: 
𝜎 𝐵𝑧 = 900 𝑝T

n2EDM: 
𝜎 𝐵𝑧 = 50 𝑝T

𝐵𝑧(𝑧 = 0 ) of chamber area

✓ Record field uniformity.

✓ Satisfies systematical
requirements to reach 
𝟏𝟎−𝟐𝟕𝒆. 𝐜𝐦 sensitivity!



18

Conclusion

Conclusion and future prospects

n2EDM@PSI aims to reach unprecedented sensitivity on the neutron EDM thanks to:

➢ Efficient UCN production/transport and large storage volume.

➢ A remarkable control of magnetic field uniformity.

As of 2023:

✓ Magnetic shielding apparatus fully 

commissioned.

✓ Magnetic field ready for physics 

measurements.

Future prospects:

➢ UCNs in precession chambers in 2024.

➢ Start data taking in 2025.
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In the Standard Model:

• CKM phase contribution to quark EDMs through at least 3 loops diagrams 
→ very negligible (𝑑𝑛 ∼ 10−32𝑒. cm).

• QCD contribution 
𝛼

8𝜋
ҧ𝜃 𝐺𝜇𝜈 ෪𝐺𝜇𝜈 should generate huge EDMs (𝑑𝑛 ∼ 10−16𝑒. cm). : 

current limit 𝒅𝒏 < 𝟏𝟎−𝟐𝟔𝒆. 𝒄𝒎 ⇒ ҧ𝜃 < 10−10(strong CP problem).

Beyond the SM:

• (ex) modified Higgs-fermion Yukawa coupling ℒ = −
𝑦𝑓

2
𝜅𝑓 ҧ𝑓𝑓ℎ + 𝑖 ǁ𝜅𝑓 ҧ𝑓𝛾5𝑓ℎ generates EDM at 2 loops.

Formally: CP violating term (EM field and quark coupling)

ℒ =
𝜇

2
ҧ𝑓𝜎𝜇𝜈𝑓 𝐹

𝜇𝜈 −
𝑖𝑑

2
ҧ𝑓𝜎𝜇𝜈𝛾5𝑓 𝐹

𝜇𝜈

𝐻 = −𝜇 𝝈 ⋅ 𝑩 − 𝑑 𝝈 ⋅ 𝑬

ℒ =
𝜇

2
ҧ𝑓𝜎𝜇𝜈𝑓 𝐹

𝜇𝜈 +
𝑖𝑑

2
ҧ𝑓𝜎𝜇𝜈𝛾5𝑓 𝐹

𝜇𝜈

𝐻 = −𝜇 𝝈 ⋅ 𝑩 + 𝑑 𝝈 ⋅ 𝑬

𝐶𝑃

1. Introduction



22

2. Measurement

Counting spins with the Ramsey method

Up-down spin asymmetry 𝐴→ precession frequency 𝑓𝑛
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2. Measurement

Hg co-magnetometry to compensate 
magnetic field fluctuations

Problem:
Uncertainty on 𝑓 dominated by magnetic field fluctuations!

Solution:
Measure instead the ratio of mercury and neutron frequencies:

ℛ =
𝑓𝑛
𝑓𝐻𝑔

=
𝛾𝑛
𝛾𝐻𝑔

∓
𝐸

𝜋ℏ𝑓𝐻𝑔
𝑑𝑛

Contribution from EDM 

𝑓𝑛 =
𝛾𝑛

2𝜋
𝐵0 ∓

𝑑𝑛

𝜋ℏ
𝐸

No contribution from EDM! 

𝑓𝐻𝑔 =
𝛾𝐻𝑔

2𝜋
𝐵0

…which is free from the magnetic field fluctuations!

𝑩 𝑩𝑬𝑬
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3. Field mapping 

How do we parametrize the magnetic field?

Polynomial field expansion

𝑩 𝒓 =෍

𝑙=0

+∞

෍

𝑚=−𝑙

𝑙

𝐺𝑙𝑚𝜫𝒍𝒎 𝒓

Maxwell’s equations 
𝛁 ⋅ 𝑩 = 0 and 𝛁 × 𝑩 = 𝟎

𝑩(𝒓) = 𝛁Σ(𝒓)

with 

ΔΣ(𝑟, 𝜑, 𝜃) = 0

Laplace equation in spherical coordinates

Harmonic modes 𝜫𝒍𝒎 𝒓
deduced from solutions 

of Laplace equation

So what do we measure? The generalized gradients 𝑮𝒍𝒎 :

• “Online” with mercury co-magnetometry and cesium magnetometers.

• “Offline” with the mapper.



25

Reminder: extraction of the harmonic spectrum

3) Fit fourier coefficients with harmonic polynomial:

𝑎𝑚
𝑧
(𝜌, 𝑧) =෍

𝑙≥0

𝐺𝑙𝑚෡Π𝑙𝑚(𝜌, 𝑧)

2) Fit rings with fourier series:

𝐵𝑧 𝜌, 𝜑, 𝑧 = ෍

𝑚≥0

𝑎𝑚
𝑧
𝜌, 𝑧 cos 𝑚𝜑 + 𝑏𝑚

𝑧
𝜌, 𝑧 sin(𝑚𝜑)

1) Do cylindrical map 𝐵𝑧(𝜌, 𝜑, 𝑧)

4) Get
𝐺𝑙𝑚spectrum

Intro
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